
Evolving Improved Incremental Learning Schemes for
Neural Network Systems

Tebogo Seipone & John A. Bullinaria
School of Computer Science

The University of Birmingham
Birmingham, B15 2TT, UK

{t.seipone, j.a.bullinaria}@cs.bham.ac.uk

Abstract- It is well known that incremental learning
can often be difficult for traditional neural network
systems, due to newly learned information interfering
with previously learned information. In this paper we
present simulation results which demonstrate how
evolutionary computation techniques can be used to
generate neural network incremental learners that
exhibit improved performance over existing systems.

1 Introduction

Most neural network learning algorithms (Bishop, 1995)
involve the network being trained with all the available
data during a single training session, learning all the data
concurrently. Once that training is finished, the network
acquires no further information. Such concurrent training
can make it difficult to update the network if additional
information becomes available later, and needs to be
incorporated into the neural network’s performance.

An incremental learning algorithm gives a system the
ability to learn from new information as it becomes
available. Incremental learning is particularly important
and relevant since in many real world applications the
complete set of data is not all available at once, and
learning really does need to be an ongoing process (Giraud-
Carrier, 2000). A neural network should be able to use
any new training data to improve its performance, without
requiring access to the previous data. This could involve
the network having to accommodate new classes of data
that are introduced with the new data.

The problem we have with neural networks is that they
are not naturally very good at incremental learning
(Polikar, et al., 2001). They do not handle the stability-
plasticity dilemma very well, and the learning of new data
tends to interfere with the previously learned information
in a manner that for memory systems is known as
catastrophic forgetting (McCloskey & Cohen, 1989;
Ratcliff, 1990). In a previous study we have shown how
simulated evolution can be used to minimize such
forgetting in neural memory systems (Seipone &
Bullinaria, 2005). The aim of this paper is to extend that
work to generalization tasks, and demonstrate how the
application of evolutionary computation techniques can
generate neural network incremental learners with better
performance than traditionally built networks and other

recent approaches to improving incremental learning. For
concreteness, we shall restrict ourselves to classification
problems, but the applicability to regression problems
should be apparent.

In the next section we review the basic problem of
incremental learning and the principal previous approaches
to dealing with it. We then give an overview of how
evolutionary computation can be usefully applied to
optimizing neural network performance. In Section 4 we
detail our series of simulations designed to explore the
relevant issues, and in the following two sections present
our main results. We end with some conclusions.

2 Incremental Learning Systems

Following Polikar et al. (2001), we define an incremental
learning system as one that has the following properties:
1. Learning from new data does not cause large scale

forgetting of previously acquired information.
2. It is able to acquire additional information from the

new data, and hence improve its performance.
3. It does not require access to the previous data from

which it learned its current state.
4. It has no problem accommodating any new classes that

are introduced in the new data.
Humans have these properties, yet achieving them in
artificial neural networks can pose serious problems.

When a neural network that has been trained on one set
of patterns is then trained on a new set, its performance on
the original set is affected. For memory tasks, this often
results in catastrophic forgetting, where the new patterns
seriously disrupt the patterns that were previously learned
(French, 2003). This is a direct result of the stability-
plasticity dilemma, and a major problem for artificial
neural network models. The problem exists because of the
very property that gives connectionist networks their
generalization and graceful degradation abilities: the single
set of shared weights representing the old information that
gets modified as the new information is learnt.

For classification tasks, the interference may be less
catastrophic, particularly if the new patterns only represent
minor changes to the classification boundaries, but we
still need to ensure that the new data improve the overall
generalization performance rather than make it worse. In

particular, we need to make sure that the additional
training doesn’t cause over-fitting, and it is not obvious
how best to incorporate standard regularisation techniques
such as stopping early and weight decay (Bishop, 1995)
into an incremental regime.

Several algorithms have already been developed with
view to creating systems that allow the learning of new
information without disrupting old information. Perhaps
the simplest procedure is called interleaved learning. Here,
the entire original training data set is mixed together with
the new patterns, and the network retrained on this new
expanded set. We can either continue training the existing
classifier, or discard the previous classifier altogether and
start again. This way, the new patterns will not interfere
with the old information, satisfying properties 1 and 2
above, but property 3 is clearly violated. This method is
also unrealistic in terms of human learning, and might be
impractical in that it requires permanent storage of all the
old data so that it is available for retraining. This can be a
major problem because of the extra storage required, and in
practice one regularly finds that the original data has been
lost or corrupted anyway. Moreover, this approach might
be too computationally expensive because larger training
sets often result in longer training times.

Some other algorithms have been developed that try to
reduce the size of the full training set by only using a
subset of the new patterns, instead of the whole set. For
example, Engelbrecht & Britis (2001) have devised a
system whereby the candidate set of new training patterns
is divided into clusters, and only the most informative
pattern is selected from each of the clusters for adding to
the training set. Of course, this approach still needs
access to all the old data, and as the number of clusters
increases, so does the computational complexity.

A related partial solution, that avoids having to use the
entire original training set, is to employ rehearsal, where
only a subset of the original data is used. Better still,
pseudorehearsal (Robins, 1995) provides the advantages of
rehearsal without requiring any access to the original data.
After the neural network has been trained with the original
data, the network generates pseudo-items by feeding
randomly generated input vectors through it, producing a
set of output vectors that correspond to the set of inputs.
These pseudo-items approximate the earlier learning of the
network, and a number of these are learnt together with the
new data. This approach has been shown to substantially
reduce the interference between sequential training items
whilst still allowing new information to be learned, but
there remains the problem of where to store these pseudo-
patterns and how many of them to produce, and we still
have to decide on appropriate values for all the traditional
neural network parameters. Moreover, even though
pseudorehearsal is guaranteed to succeed in high
dimensions under fairly general conditions, it has been
shown to fail in low dimensions. In fact, in some cases,
the method is more likely to increase forgetting than to
alleviate it, and if the number of pseudo-items approaches
the dimensionality of the inputs, the system fails to learn

the new items, let alone preserve old items (Frean &
Robins, 1999).

Other researchers have developed somewhat different
approaches to eliminate the need to access the old training
data. Particularly successful is the Learn++ algorithm of
Polikar et al. (2001) which uses an ensemble of weak
classifiers to generate multiple hypotheses using training
data sampled according to some tailored distributions.
Simulation results on a range of benchmark classification
data-sets indicate that this algorithm works rather well in
practice. Moreover, the Learn++ algorithm has also been
shown to cope well with new classes, and hence satisfy
property 4 above (Polikar et al. 2002).

Our own approach is to return to traditional neural
network systems and use evolutionary techniques to
optimize them to the extent that the usual problems of
incremental learning are sufficiently minimised that we
simply don’t need to worry about them. We have
previously shown how this works for memory tasks
(Seipone & Bullinaria, 2005), and here we extend this
approach to classification tasks.

3 Evolving Neural Networks

The idea of applying the basic principles and ideas of
natural evolution to optimize the performance of neural
network systems is now widely used (e.g. Yao, 1999;
Bullinaria, 2003). A population of individual networks,
each specified by an appropriate set of innate parameters,
is maintained. The ‘fittest’ individuals from each
generation, i.e. those exhibiting the best performance on
their given task, are selected as parents. Suitable
crossover and mutation operators are then applied to those
parents to produce offspring for populating the next
generation. This process is repeated, creating increasingly
fit populations. Such an approach has been used to select
optimal network topologies, learning algorithms, transfer
functions, and other network parameters.

One attractive feature of evolving neural networks is
the fact that any parameter of the neural network can be
subjected to the evolutionary process, and it is possible for
parameters that interact in complex manners to be evolved
simultaneously. This means that the crucial and
extremely difficult task of setting the neural network
parameters can be left to the evolutionary process, rather
than having to be set by hand by the network designer.
Another distinctive feature of evolving neural networks is
their adaptability to a dynamic environment, their ability
to change their architecture and learning rules appropriately
with limited or no human intervention. Results obtained
from evolving neural networks have been reported to be
significantly better than traditional hand built neural
networks (Yao 1999, Bullinaria 2003).

The standard approach is to start the evolutionary
process with an initial population of randomly created
artificial genotypes, each encoding some or all of the free
parameters of a neural network, or the initial values of any

adaptable parameters (such as connection weights). Each
network is then trained and evaluated to determine its
performance on the task at hand, and the fittest networks
are allowed to reproduce by generating copies of their
genotypes, with changes introduced by genetic operators
such as crossover and mutations. This process is repeated
for a number of generations until a network, or group of
networks, that best satisfy the performance criteria is
obtained. The major difficulties are to determine: which
innate parameters to include in the genotype and how to
represent them, how exactly to specify the fitness and
choose the parents, and what are the most appropriate
cross-over and mutation operators.

4 Simulation Details

To see what evolution can do to generate good neural
network incremental learners, we now need to specify a
concrete learning task, the details of our neural networks,
and the properties we wish to evolve.

For ease of comparison, we used the main training data
set studied by Polikar et al. (2001), namely the optical
digits database from the UCI machine learning repository
(Blake & Merz, 1998). This database contains hand-
written digits 0 to 9 digitised on an 8x8 grid to create 64
input attributes for the ten classes. The full training file
contains 3823 patterns. At each stage, these were divided
into six distinct data sub-sets of 200 patterns (each with
20 patterns from each digit class) to be used for training,
plus a further distinct sub-set of 1797 patterns to be used
for validation purposes. The idea of course, is to
maximize the generalization performance after training.

We specified the architecture of our networks and their
learning algorithm to be fixed as standard sigmoidal Multi-
Layer Perceptrons with one hidden layer, trained by
gradient descent weight updating (back-propagation) with
the Cross Entropy error measure (Bullinaria 2003). The
nature of the training data then set the number of input
units to be 64, and the number of output units to be 10,
one for each class. The number of hidden units NH is
something that can be freely evolved, but preliminary
simulations and related work (Seipone & Bullinaria, 2005)
showed that the number tends to grow to near the
maximum number allowed, which inflicts a considerable
strain on the computational resources, so we fixed a
maximum number of hidden units to be 100, which is
many times that needed to learn the given training data.

The most obvious network parameters to evolve are
the learning rates and initial weight distributions. It has
been established in earlier studies (Bullinaria, 2003) that
the best performance is obtained by allowing separate
gradient descent learning rates ηL for each of the four
network components L (hidden unit biases, output unit
biases, input to hidden units, hidden to output units), and
corresponding separate uniform initial weight distributions
specified by the lower and upper ends of the range
[–lL, +u L]. The networks are trained until all the output

units are within a particular tolerance t of the target
outputs for all training patterns. That tolerance t, a weight
decay regularization parameter λ to limit over-fitting, a
sigmoid prime offset s to prevent saturation of the hidden
units, and connectivity proportions cIH, cHO between layers,
are also evolved. In all, each network is specified by 18
innate parameters {NH, η L, lL, uL, t, λ , s, cIH, cHO} whose
values we aim to evolve to minimize over-fitting of the
training data and hence maximize the generalization
performance.

The initial population is started with random innate
parameters, and for each generation, each individual has
new random initial weights drawn from its own innately
specified range. The aim is to evolve the various network
parameters to produce networks with better incremental
learning abilities.

There are two natural ways to use the training data.
We can, for each generation, randomly select new training
and validation pattern sets as specified above, or we can
use the same sets for each generation. Having new
training data for each generation proved to result in better
general purpose learners, so we shall present results for
that approach. Training takes place over series of six
training sessions for each neural network. During each
training session, only one of the six training sets is used
to train each neural network until the error on each output
unit is less than the innate tolerance t, or until a
maximum number of training epochs is reached. The
maximum number of epochs is set large enough that it
only comes into play in the first few generations when the
learning abilities are very poor. Each network is then
tested on all the training sets used in the previous training
sessions to see how much interference is taking place.

After the networks have been trained on each data-set,
they are also tested on the validation set as a measure of
their generalization ability. The fittest individuals are
taken to be those with the lowest error on the validation
set after training on all six data-sets. The least fit half of
the population is then discarded, and each of the remaining
individuals select a random partner and produce one child,
thus restoring the population size. The children each
inherit innate parameter values drawn randomly from the
range spanned by both parents, plus random mutations
from a Gaussian distribution that are added to allow values
outside that range (Bullinaria, 2003; Seipone & Bullinaria
2005).

The UCI database also contains a separate testing data
file of 1797 further patterns, none of which are used during
any of the training sessions. This whole test set is
reserved for a final testing of the evolved networks’
incremental learning and generalization ability. As more
and more of the six data sets are used to train an evolved
network, its generalization ability is expected to gradually
increase to demonstrate its incremental learning capability,
but at the same time its performance on the previous
datasets should not be seriously reduced.

For all our simulations, the populations consist of
100 neural networks. As explained above, each network is

initialised with random initial weights from its own innate
distribution, and is trained sequentially on six different
data-sets using its own innately specified parameters. The
networks’ classification outputs are given by the highest
activated output unit for each input pattern. Fitness was
measured by generalisation performance on the validation
set, and children were created to replace the least fit fifty
networks by applying crossover and mutations to the
fittest 50 networks.

5 Simulation Results

Before starting the evolutionary simulations, the baseline
performance levels were established for standard neural
network training parameters. One hundred fully connected
networks with 100 hidden units were initialized with all
their random weights drawn uniformly from the range
[-1, 1], and trained for 5000 epochs using the back
propagation algorithm with all the learning rates fixed at
0.02, and no weight decay or sigmoid prime offsets. The
average performances of these standard networks are
shown, as percentages, in Table 1. Each row shows the
classification performance of the networks on the current
data-set, and the performance on the same dataset after
training on subsequent datasets. The last two rows show
the generalization performance as measured on the
validation and test sets. We see a general fall off in
performance on each training data set as later sets are
learned. The generalization performance does increase with
the first two sets, but then starts falling again as the later
sets are learned. This is a sure sign of poor incremental
learning ability.

Polikar et al. (2001) developed their Learn++ system
to obtain better incremental learning. Table 2 shows the
results they achieved with the same data. Although the
initial training performance starts lower, it is much more
steady as more training data sets are introduced. We also
see a steady increase in generalization performance as more
data is made available. The question we now set out to
explore is: can we do even better by evolving our neural
networks to be good at incremental learning?

To get an idea of what is actually possible with the
given data, we began by evolving networks to generalize

as well as possible from only one set of 200 patterns, and
from all six sets together (i.e. 1200 patterns) in a single
training session. Exactly the same evolutionary regime
was used as for the incremental learners, except that here
we only have one training data set instead of six. Further
details about evolved non-incremental learners such as
these can be found in Bullinaria (2003). The ten fittest
evolved individuals were then re-initialized and trained on
new random training data-sets. This process resulted in
final test set performances of 91.7% from 200 training
patterns, and 95.8% from 1200 patterns. These set the
best levels of performance that we can reasonably expect
from our evolved incremental learners.

We now move on to the full evolutionary simulations
described in the previous section. We started each initial
population with innate connectivities, learning rates, and
initial weight distribution parameters drawn randomly
from the range [0, 1], tolerances from [0, 0.5], sigmoid
prime offsets from [0, 0.2], weight decay parameters from
[0, 0.001], and numbers of hidden units from [0, 100].
The precise starting ranges actually have very little effect
on the final results, but poor values can lead to an
extremely slow start to the evolutionary process.

The final results are fairly consistent across
evolutionary runs starting from different random initial
configurations. Figure 1 presents the population average
results from a typical run. The top two graphs show how
the learning rates and initial weight distributions evolve.
The precise values don’t tell us much, but note the large
variation in learning rates that emerge for the different
components. These would be very difficult to get right
‘by hand’. The bottom left graph shows how the number
of hidden units quickly drifts towards the maximum
number allowed. Not shown (due to lack of space) are the
sigmoid prime offset which quickly reduces to negligible
values showing that it is of little help, the connectivity
parameters that quickly establish full connectivity, the
weight decay parameter that settles down to around
0.0000005, and the tolerance that settles down around
0.05. The bottom right graph shows how the
generalization performance measures improve little after
the first few hundred generations, despite many of the
other parameters continuing to change. The persistent
fluctuations in performance reflect the random nature of

T 1 T 2 T 3 T 4 T 5 T 6
S1 100 94.5 93.0 92.4 90.5 88.7
S2 -- 100 93.8 92.7 90.8 88.0
S3 -- -- 100 92.2 90.3 88.7
S4 -- -- -- 100 91.9 87.9
S5 -- -- -- -- 99.8 88.2
S6 -- -- -- -- -- 98.3

Val . 90.5 91.8 91.6 91.4 90.1 87.7
Test 88.0 89.1 89.0 89.0 87.6 85.4

Table 1: Average performances for neural networks trained
using traditional back-propagation learning parameters.

T 1 T 2 T 3 T 4 T 5 T 6
S1 94 94 94 93 93 93
S2 -- 93.5 94 94 94 93
S3 -- -- 95 94 94 94
S4 -- -- -- 93.5 94 94
S5 -- -- -- -- 95 95
S6 -- -- -- -- -- 95

Val . -- -- -- -- -- --
Test 82.0 84.7 89.7 91.7 92.2 92.7

Table 2: The Learn++ results presented by Polikar et al.
(2001).

the training data sets and initial weight distributions. The
fluctuations in the parameters during evolution reflect how
crucial each one is to the final fitness.

Table 3 shows the performance averages over ten runs
of the fittest ten evolved networks. As one would expect,
all aspects show an improvement over the standard
network results of Table 1. More importantly, we also
see an improvement over the Learn++ results of Table 2.
The performance levels on the training data sets still fall
slightly as the later training data sets are processed, but
those performance levels remain well above those for
Learn++. The generalization performance is also better
than Learn++ at each stage, and shows a gradual
improvement as more data sets are used, indicating a good
incremental learner. The final test set performance of
94.4% appears a modest improvement over the Learn++
value of 92.7%, but it more than halves the gap between
the incremental learning performance and the 95.8%
obtainable by training on all the data at once.

It is clear that our evolved networks are satisfying the
first three of the four properties of incremental learning
systems discussed in Section 2. The fourth property will
be discussed in the next section. First, we need to look at

an unfortunate side effect of the evolutionary process,
namely the number of epochs of training that is required to
get the good results. This is a direct consequence of the
evolved parameters, particularly the tolerance. During
evolution, the tolerance falls, and that inevitably increases
the number of epochs required to reach those lower error
levels, as can be seen clearly in Figure 2. A similar
requirement of slow training for good performance was
also found in our related work on avoiding catastrophic
forgetting in neural memory systems (Seipone &
Bullinaria, 2005). However, it appears from the
generalization results in Figure 1 that the final stages of
evolution, including the massive increase in training time,
actually have relatively little effect on the performance.
One might therefore be tempted to impose a maximum
number of epochs of training for each data-set, but this is
problematic in that the first data-set will naturally require
more epochs than later sets, and interfering with that could
unbalance the whole incremental process. It makes better
sense to see how well we can do if we simply stop the
evolution after only 300 generations, when the training
times are still relatively low, but the generalization
performance appears to not be improving much further.

9006003000
10 - 3

10 - 2

10 - 1

10 0

Generation

Et
a

etaHB

etaHO

etaOB

etaIH

 9006003000
10 - 2

10 - 1

10 0

10 1

Generation

In
it.

 w
t.

iwtIH

iwtOB

9006003000
70

80

90

100

Generation

Nu
m
Hi
d

 9006003000
85

90

95

100

Generation

Co
rr

ec
t

Validation Set

Test Set

Figure 1: Evolution of the population average learning rates (top left), initial weight distributions (top right), number of hidden
units (bottom left), and generalization performance measures after six sets of training data (bottom right).

Table 4 shows the performance levels this achieves. They
are only slightly worse than after the full evolutionary
process, and still show a big improvement over the non-
evolved neural networks and the Learn++ results.

In our work on memory systems (Seipone &
Bullinaria, 2005) we found that further improvements
could be achieved by allowing even more hidden units.
Preliminary results suggest that the same is true here, but
the increased training times make getting statistically
reliable performance results difficult.

6 Incremental Learning with New Classes

Having established that our networks exhibit the first three
properties of good incremental learning systems described
in Section 2, we now move on to explore property four,
namely the ability of our networks to accommodate new
classes of data that may be introduced with the new data.
The same optical digits database was used as in the earlier
simulations, but now, instead of using six data-sets
containing equal proportions of all 10 classes, only four
data-sets were used, with each data-set introducing some
new classes or removing some previously seen classes.

A total of 2200 patterns randomly selected from the

3823 patterns in the training file were used for training,
and 1270 of the remaining patterns used for validation.
The distribution of the classes in the four sets matched
that studied by Polikar et al. (2002) and is shown in Table
5. Each row shows the number of patterns from that class
in each of the four sets. The validation and test sets, as
before, both contain equal numbers of each class. The
incremental learning results achieved by baseline neural
networks and Learn++ are shown in Tables 6 and 7.

The simulations proceeded in the same way as before,
except that instead of randomly selecting new training and
validation sets for every generation, these were selected
only once, with the same sets used for all generations.
Figure 3 presents the main results from a typical run. We
see a surprisingly different pattern of results to Figure 1.
Dealing with new classes is obviously more difficult than
the uniform case considered before, and new strategies are
necessary. The most striking change is the high training
tolerance of around 0.8, which means that many training
patterns are nowhere near fully learned. Also of interest is
the evolution of the performance results, which consists of
a slow drift in average performance, plus increasingly large
variations in performance between individuals. Despite
those relatively large individual differences, there remains a
strong correlation between the validation and test set

9006003000
10 - 2

10 - 1

10 0

10 1

10 2

10 3

10 4

Generation

Tr
ai

ni
ng Ep

oc
hs

Er
ro

r

Tolerance

Training time

Figure 2: The relation during evolution between the training
tolerance and resultant training times.

Class Set 1 Set 2 Set 3 Set 4
0 100 50 50 25
1 0 150 50 0
2 100 50 50 25
3 0 150 50 25
4 100 50 50 0
5 0 150 50 25
6 100 50 0 100
7 0 0 150 50
8 100 0 0 150
9 0 50 100 50

Table 5: The differing distribution of classes across the “new
classes” training sets, as used by Polikar et al. (2002).

T 1 T 2 T 3 T 4 T 5 T 6
S1 100 98.8 98.4 98.1 97.9 98.0
S2 -- 100 98.9 98.3 98.0 97.8
S3 -- -- 100 99.0 98.5 98.3
S4 -- -- -- 100 99.1 98.5
S5 -- -- -- -- 100 98.9
S6 -- -- -- -- -- 100

Val . 93.4 95.0 95.5 95.9 96.0 96.3
Test 91.4 92.9 93.6 93.9 94.2 94.4

Table 3: Average individual performances after the neural
network parameters have been evolved to a stable state.

T 1 T 2 T 3 T 4 T 5 T 6
S1 100 98.7 98.2 97.8 97.9 97.7
S2 -- 100 98.7 98.1 97.9 97.8
S3 -- -- 100 98.9 98.2 98.0
S4 -- -- -- 100 98.8 98.1
S5 -- -- -- -- 100 98.8
S6 -- -- -- -- -- 100

Val . 93.4 94.7 95.3 95.7 95.9 96.1
Test 91.2 92.7 93.3 93.7 94.1 94.3

Table 4: Average individual performances after evolving the
neural network parameters for only 300 generations.

results, and measuring only the fittest ten individuals in
each generation shows that evolution is still resulting in
increasingly good test set results. By 1200 generations
the mean fitness has stopped improving, with performance
results shown in Table 8. We see clear improvement over
the non-evolved neural networks and Learn++ results.

Interestingly, if we allow the evolution to continue
further, we find that the variance across individuals
increases even more, with significant numbers of very
poor performers in each generation. However, the fittest
ten individuals in each generation continue to show
increasingly good final generalization. At generation 1500
we find the pattern of performance shown in Table 9. The
final generalization performance has risen to 92.0%, but at
the expense of much poorer generalization earlier on, only
32.8% after the first training set. This is clearly going to
be problematic if we wish to have the best performance
possible after each stage of training. Taking the final
validation set performance as our measure of fitness
worked well when all the classes were represented in all
the training sets, but in the “new classes” situations, one
may prefer to base the fitness on some function of the
performance during the whole learning process. This is a

straight-forward modification to the evolutionary process
that will need to be tailored to specific applications.

7 Conclusions

We have reviewed the problems that traditional neural
networks have in dealing with incremental learning tasks,
and some of the previous approaches that have been
developed to improve the situation. The main result of
this paper has been to show that evolutionary computation
techniques can alleviate these problems by optimizing
standard neural networks to the extent that they perform
much better than traditional neural networks, and also
exhibit improved performance over more complex
solutions such as Learn++.

We clearly have much further work to do, in particular,
confirming the increase in performance for a wider range of
data sets. It will also be important to evolve good general
purpose neural networks, that can cope with any training
data regime, rather than the fixed patterns of classes in
each training set studied here. This will simply require
switching between the relevant different training data set

150010005000
10 - 4

10 - 3

10 - 2

10 - 1

10 0

Generation

etaHB

etaHO
etaOB

etaIH

 150010005000
10 - 3

10 - 2

10 - 1

10 0

10 1

Generation

iwtIH

iwtHB

iwHO

150010005000
0.0

0.3

0.6

0.9

0

100

200

300

Generation

Ep
oc

hs

Er
ro

r

Tolerance

Training time

 150010005000
75

80

85

90

Generation

Co
rr

ec
t

Test Set

Validation Set

Figure 3: Evolution of the learning rates (top left), initial weight distributions (top right), training tolerance and time (bottom
left), and generalization performance measures after four sets of training data (bottom right) for the “new classes” data-sets.

regimes with each generation, so that populations evolve
that can cope well with them all.

There may also be further improvements to be had by
incorporating dual weight architectures, with two sets of
weights, one of which learns and decays faster than the
other (Hinton & Plaut, 1987). We have already shown
that evolving such dual weight systems can reduce the
catastrophic interference in neural memory systems beyond
that achieved by evolving standard networks (Seipone &
Bullinaria, 2005), and it is possible that it will produce
similar improvements in classification networks too.

Bibliography

Bishop, C.M. (1995). Neural Networks for Pattern
Recognition. Oxford, UK: Oxford University Press.

Blake, C.L. & Merz, C.J. (1998). UCI Repository of
machine learning databases. University of California,
Irvine, Dept. of Information and Computer Science.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Bullinaria, J.A. (2003). Evolving Efficient Learning
Algorithms for Binary Mappings. Neural Networks,
16, 793-800.

Engelbrecht, A.P. & Brits, R. (2001). A Clustering
Approach to Incremental Learning for Feedforward
Neural Networks. Proceedings of the International
Joint Conference in Neural Networks, 3, 2019-2024

Frean, M. & Robins, A. (1999). Catastrophic Forgetting
in Simple Neural Networks: An Analysis of the
Pseudorehearsal Solution. Network: Computation in
Neural Systems, 10, 227-236.

French, R.M. (2003). Catastrophic Interference in
Connectionist Networks. In: L. Nadel (Ed),

Encyclopedia of Cognitive Science, 1, 431-435.
Giraud-Carrier, C. (2000). A Note on the Utility of

Incremental Learning. AI Communications, 1 3 , 215-
223.

Hinton, G.E. & Plaut, D.C. (1987). Using Fast Weights
to Deblur Old Memories. Proceedings of the Ninth
Annual Conference of the Cognitive Science Society.
NJ:Erlbaum. 177-186.

McCloskey, M. & Cohen, N.J. (1989). Catastrophic
Interference in Connectionist Networks: The
Sequential Learning Problem. The Psychology of
Learning and Motivation, 24, 109-165.

Polikar, R., Byorick, J., Krause, S., Marino, A., &
Moreton, M. (2002). Learn++: A Classifier
Independent Incremental Learning Algorithm for
Supervised Neural Networks. Proceedings of the 2002
International Joint Conference on Neural Networks. 2 ,
1742-1747.

Polikar, R., Udpa, L., Udpa, S.S., & Honavar, V. (2001).
Learn++: An Incremental Learning Algorithm for
Multi-Layer Perceptron Networks. IEEE Transactions
on Systems, Man, and Cybernetics. 31, 497-508.

Ratcliff, R. (1990). Connectionist Models of Recognition
and Memory: Constraints Imposed by Learning and
Forgetting Functions. Psychological Review, 97 ,
205-308.

Robins, A. (1995). Catastrophic Forgetting, Rehearsal and
Pseudorehearsal. Connection Science, 7, 123-146.

Seipone, T. & Bullinaria, J.A. (2005). The Evolution of
Minimal Catastrophic Forgetting in Neural Systems.
Proceedings of the Twenty-Seventh Annual Conference
of the Cognitive Science Society. Mahwah, NJ: LEA.

Yao, X. (1999). Evolving Artificial Neural Networks.
Proceedings of the IEEE, 87, 1423-1447.

T 1 T 2 T 3 T 4
S1 100 77.3 68.1 85.9
S2 -- 100 90.5 69.0
S3 -- -- 100 81.6
S4 -- -- -- 100

Val . 48.5 76.7 80.5 79.4
Test 48.3 75.7 80.1 77.9

Table 6: Performances for the ‘new classes’ data-sets for
neural networks trained using traditional learning parameters.

T 1 T 2 T 3 T 4
S1 96.6 89.8 86.0 94.8
S2 -- 87.1 89.4 87.9
S3 -- -- 92.0 92.2
S4 -- -- -- 87.3

Val . -- -- -- --
Test 46.6 68.9 82.0 87.0

Table 7: The Learn++ results of Polikar et al. (2002) for the
‘new classes’ data-sets.

T 1 T 2 T 3 T 4
S1 97.0 75.5 75.1 93.9
S2 -- 97.8 95.1 89.3
S3 -- -- 97.3 92.0
S4 -- -- -- 97.2

Val . 47.2 75.2 84.9 92.6
Test 47.5 73.2 84.4 90.4

Table 8: Average individual performances after 1200
generations of evolution with the “new classes” data-sets.

T 1 T 2 T 3 T 4
S1 67.3 75.4 74.9 93.3
S2 -- 98.1 95.3 93.7
S3 -- -- 97.7 95.9
S4 -- -- -- 95.4

Val . 32.7 76.1 85.0 94.4
Test 32.8 74.5 84.3 92.0

Table 9: Average individual performances after 1500
generations of evolution with the “new classes” data-sets.

