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Abstract

The Vehicle Routing Problem with Time Windows is a complex combinatorial problem with many real-world applications
in transportation and distribution logistics. Its main objective is to find the lowest distance set of routes to deliver
goods, using a fleet of identical vehicles with restricted capacity, to customers with service time windows. However,
there are other objectives, and having a range of solutions representing the trade-offs between objectives is crucial for
many applications. Although previous research has used evolutionary methods for solving this problem, it has rarely
concentrated on the optimization of more than one objective, and hardly ever explicitly considered the diversity of
solutions. This paper proposes and analyzes a novel multi-objective evolutionary algorithm, which incorporates methods
for measuring the similarity of solutions, to solve the multi-objective problem. The algorithm is applied to a standard
benchmark problem set, showing that when the similarity measure is used appropriately, the diversity and quality of
solutions is higher than when it is not used, and the algorithm achieves highly competitive results compared with
previously published studies and those from a popular evolutionary multi-objective optimizer.

Key words: Vehicle routing problem, combinatorial optimization, multi-objective optimization, evolutionary
algorithms.

1. Introduction

The Vehicle Routing Problem (VRP) is one of the most
important and widely studied combinatorial optimization
problems, with many real-world applications in distribu-
tion and transportation logistics [1]. Its objective is to
obtain the lowest-cost set of routes to deliver demand to
customers. But what does lowest-cost mean? Since the
problem was proposed by Dantzig and Ramser [2] as a
generalization of the Traveling Salesman Problem, cost
has mostly been associated with the travel distance, but
there are several other types of cost involved, such as the
number of vehicles and delivery time [3]. The VRP also
has several variants that involve different constraints. The
variant with Time Windows (VRPTW) has vehicles with
limited capacity and specific delivery time windows, and is
particularly relevant to practical applications. With such
constraints, the minimization of one objective rarely cor-
responds to the minimization of all of them, and the op-
timization process needs to provide a range of solutions
that represent the trade-offs between the objectives, rather
than a single solution.
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Optimal solutions for small instances of the VRPTW
can be obtained using exact methods, but the computation
time required increases considerably for larger instances
[4], so heuristic methods are usually employed. Cordeau
et al. [5] review a number of different approaches, and the
recent surveys by Bräysy and Gendreau [6, 7] provide a
complete list of studies utilizing a number of heuristics and
a comparison of the results obtained. Although numer-
ous metaheuristic methods have been proposed, this pa-
per concentrates on those using evolutionary computation
methods, since they have a natural approach for dealing
with multi-objective problems, and have been successful
in many practical situations [8]. Evolutionary Algorithms
(EA) are based on Darwin’s theory of evolution by natural
selection: A population (set) of individuals (solutions) is
maintained, and the EA selects, recombines, and mutates
the fittest (best solutions) to replace the least fit, in the
hope of producing solutions of increased fitness (quality).
The evolutionary operations are repeated until the qual-
ity of solutions stops increasing, or some fixed number of
generations (cycles) has been reached. A number of evo-
lutionary and hybrid algorithms tackling the VRPTW are
analyzed by Bräysy et al. [9]. Section 3 reviews the key
approaches from that survey, as well as some more recent
studies.

The remainder of this paper is organized as follows:
Section 2 provides definitions of the key issues relevant to
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this study, namely the formal specification of the VRPTW,
and a brief introduction to the technicalities of multi-
objective optimization and the associated performance
metrics. Then Section 3 reviews the previous studies in
these areas. In Section 4 is described the multi-objective
evolutionary algorithm proposed here for solving the
VRPTW problem, and the underlying similarity measure.
The experimental design used to test the algorithm is de-
tailed in Section 5, and the analysis of results is presented
in Section 6. Finally, some conclusions and ideas for future
research in this area are provided in Section 7.

2. Problem Definitions

This section provides an overview of the two crucial
topics relevant to this study: the formal description of
the VRPTW and the technicalities of multi-objective op-
timization.

2.1. The vehicle routing problem with time windows

The VRPTW is a complex combinatorial optimization
problem which is NP-hard [10]. The objective is to find
a minimum-cost set of routes to deliver demand to cus-
tomers, who have specific delivery time windows, by using
a fleet of identical vehicles with limited capacity.

An instance of the VRPTW can be formally defined
as follows. First, there is a set V = {0, . . . , N} of ver-
tices, and vertices in subset V∗ = V \ {0} = {1, . . . , N}
are called customers. Each customer i ∈ V∗ is geographi-
cally located at coordinates (xi, yi), has a demand of goods
gi > 0, a time window [bi, ei] during which it must be sup-
plied, and a service time si required to unload its goods.
The special vertex 0 is called the depot, from which the
customers are serviced using a homogeneous fleet of ve-
hicles with capacity Q ≥ max {gi : i ∈ V∗}. The depot
is positioned at (x0, y0), has demand g0 = 0, and time
window [0, e0 ≥ max {ei : i ∈ V∗}].

The travel between vertices i and j has associated costs,
such as the distance dij (relating to fuel cost) and travel
time tij (relating to driver cost). For the benchmark prob-
lems to be considered later, unit velocity and direct travel
are assumed, so the times and distances are both simply
taken to be the Euclidean distances

tij = dij =
√

(xi − xj)2 + (yi − yj)2 . (1)

For real-world problems, however, the distances dij are
unlikely to be Euclidean and the travel times tij are un-
likely to be simply related to the distances. The following
accommodates those possibilities.

The problem is to design a lowest-cost set of K routes
R = {r1, . . . , rK}, such that each route begins and ends
at the depot, and each customer is serviced by exactly one
vehicle. So each vehicle is assigned a set of customers that
it has to supply, with the sum of their demands not exceed-
ing the vehicle capacity Q. If rk = 〈u(1, k), . . . , u(Nk, k)〉

specifies the sequence of Nk customers supplied in the k-
th route, where u(i, k) is the i-th customer to be visited
in route k, then V∗

k = {u(1, k), . . . , u(Nk, k)} is the set of
customers serviced. The depot does not appear explicitly
in this notation, but it has to be taken into account before
the first and after the last customers when computing the
costs, i.e. as u(0, k) = u(Nk + 1, k) = 0. Then

Dk =

Nk
∑

i = 0

du(i,k)u(i+1,k) (2)

is the total travel distance associated with route rk.
In addition to defining the distances, the times are also

required. Let a(u(i, k)) denote the arrival time of vehicle
k at vertex i and l(u(i, k)) be the time it leaves, and have
each vehicle k leave the depot at time 0, i.e. l(u(0, k)) = 0.
The arrival time of vehicle k at the i-th customer is then

a(u(i, k)) = l(u(i − 1, k)) + tu(i−1,k)u(i,k) . (3)

Arriving after the end of the customer’s time window is not
allowed, rendering the route invalid. However, arriving
early is allowed, but then the vehicle will have to wait
until the beginning of the customer time window to start
unloading the goods, so there will be a waiting time

w(u(i, k)) =

{

0 if a(u(i, k)) ≥ bu(i,k)

bu(i,k) − a(u(i, k)) otherwise
. (4)

Thus, the leaving time from the i-th customer in route k
is

l(u(i, k)) = a(u(i, k)) + w(u(i + 1, k)) + su(i,k) (5)

and the total time required to complete route rk is the
arrival time at the depot

Tk =

Nk
∑

i = 0

(

tu(i,k)u(i+1,k) + w(u(i + 1, k)) + su(i+1,k)

)

.

(6)
Having defined the VRPTW, one can specify any num-

ber of relevant objective functions fi to optimize. This
paper will concentrate on the three key objectives, namely
the number of routes or vehicles

f1(R) = |R| = K , (7)

the total travel distance given by summing the route dis-
tances

f2(R) =
K
∑

k = 1

Dk , (8)

and the total travel time given by summing the arrival
times back at the depot

f3(R) =
K
∑

k = 1

Tk , (9)
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subject to the demand associated with customers serviced
in route rk not exceeding the vehicle capacity

Gk =
∑

i ∈ V∗

k

gi ≤ Q ∀ k = 1, . . .K , (10)

and the arrival times being within the customer’s con-
straints

bu(i,k) ≤ a(u(i, k)) ≤ eu(i,k),
∀ k = 1, . . .K
1 ≤ i ≤ Nk

. (11)

2.2. Multi-objective optimization problems
Any multi-objective optimization problem can, with-

out loss of generality, be defined as a minimization prob-
lem of the form:

minimize f(x) = (f1(x), . . . , fF (x)) (12)

subject to constraints:

gi(x) ≤ 0 ∀ i = 1, . . . , p (13)

hj(x) = 0 ∀ j = 1, . . . , q (14)

where x = (x1, . . . , xn) ∈ X is the vector of decision vari-
ables, X is the parameter space, and fi : R

n → R, for
i = 1, . . . , F , are the F objective functions. The con-
straint functions gi, hj : R

n → R in (13) and (14) restrict
x so that only feasible solutions are considered.

A decision vector x ∈ X is said to cover a decision
vector y ∈ X (x � y) if fi(x) ≤ fi(y), ∀ i = 1, . . . , F .
Vector x dominates y (x ≺ y) if and only if x � y and
∃ j ∈ {1, . . . , F} : fj(x) < fj(y). Similarly, one says
that a decision vector x ∈ X is non-dominated if there is
no decision vector y ∈ X such that y ≺ x. A decision
vector x ∈ X is said to be Pareto optimal if it is non-
dominated. The Pareto optimal set is defined as Ps =
{x ∈ X | x is Pareto optimal}. Finally, the Pareto front
is defined as Pf = {f(x) ∈ R

n | x ∈ Ps}.
For multi-objective problems, heuristics generally have

two aims [11]: First, to minimize the distance of the gen-
erated solutions, called the Pareto approximation, from
the true Pareto front, and second, to maximize the di-
versity of them, i.e. the coverage of the Pareto front. In
the literature, there are already a number of evolutionary
multi-objective optimizers that successfully address these
aims, such as NSGA-II [12], SPEA2 [13], PAES [14] and
IBEA [15], and this paper aims to introduce further im-
provements. However, the comparison of multi-objective
optimizer performance is not easy. In contrast to single-
objective problems, where one can straightforwardly com-
pare the best solutions, or averages of them, from the var-
ious approaches studied, multi-objective problems have to
compare whole sets of solutions, with at least the two aims
just mentioned. For this reason, the definition and use of
appropriate performance metrics is crucial. Fortunately,
this issue has already been widely studied, and of the many
proposed metrics [16, 17, 18, 19, 20], two are particularly
applicable to the problem at hand. These, the hypervol-
ume proposed by Zitzler and Thiele [16] and coverage from
Zitzler et al. [17], are now defined.

Figure 1: Graphical representation of the hypervolume MH and cov-
erage MC metrics.

2.2.1. Hypervolume

This metric concerns the size of the objective space
covered by a set A of solutions, which is limited by setting
a suitable reference point. Figure 1 shows an example
of this metric, where the solution points x1, . . . ,x6 ∈ A
cover the shaded region limited by the reference point z.
For maximization problems, it is common to take z to be
the origin (0, 0). For minimization problems, z is set to
exceed the maximal values for each objective. Either way,
when using this metric to compare the performance of two
or more algorithms, the one providing solutions with the
largest covered hypervolume is deemed to be the best.

Formally, for a two-dimensional objective space, each
solution x ∈ A covers a rectangle defined by its coordi-
nates (f1(x), f2(x)) and the reference point z = (zf1

, zf2
),

and the size of the union of all such rectangles covered by
the solutions is used as the measure. This concept can
be extended to any number of dimensions D to give the
general hypervolume metric [16]:

MH(A) = λ

(

⋃

x ∈ A

{[f1(x), zf1
] × · · · × [fD(x), zfD

]}

)

(15)
where λ(·) is the standard Lebesgue measure.

2.2.2. Coverage

This performance metric measures the extent to which
one solution set B is covered by another solution set A. It
compares the number of solutions in B that are covered by
solutions in A to the cardinality of B. Formally, this ratio
maps the ordered pair (A,B) to the interval [0,1] as the
general coverage metric [17]:

MC(A,B) =
|{b ∈ B : ∃ a ∈ A, a � b}|

|B|
. (16)

The value MC(A,B) = 1 means that all solutions in B are
covered by solutions in A, while MC(A,B) = 0 indicates
that none of the solutions in B are covered by those in A.
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Since MC(A,B) does not necessarily equal 1 − MC(B,A),
both MC(A,B) and MC(B,A) need to be computed.

The idea here is that the algorithm with the best per-
formance is the one which provides solutions with the
largest coverage of the solutions from the others. In Figure
1 there are 6 filled circles x1, . . . ,x6 ∈ A and 5 open circles
y1, . . . ,y5 ∈ B. Three points in set B (y2, y4, and y5) are
covered by set A, and two points in A (x1 and x3) are cov-
ered by set B, so MC(A, B) = 3/5, and MC(B, A) = 2/6.
Thus the algorithm providing solutions A is deemed better
than that providing solutions B.

3. Previous Studies

This section provides a brief overview of the key past
work of relevance to the current study.

Rahoual et al. [21] designed a Genetic Algorithm (GA)
for the VRPTW based on the well-known NSGA [22] for
minimizing the number of routes, the travel distance, and
the penalties associated with violated constraints. Jung
and Moon [23] then went on to propose a hybrid GA which
used a 2D image of a solution to perform the crossover
process, based on dividing the routes in the selected solu-
tions into sequences of different types of curves drawn on
the 2D space where customers are located, with a repair
mechanism to re-connect the sequences. This algorithm
continued with the use of three local optimization tech-
niques. Later, Zhu [24] presented a GA that adapts the
cross-over and mutation rates to the population dynam-
ics, maintaining population diversity at user-defined lev-
els, and thus preventing premature convergence. He con-
sidered a permutation based solution representation and
a decoding mechanism which is O(N 3), where N is the
number of customers.

Jozefowiez et al. [25] addressed a VRP in which the
total route length and the route imbalance are minimized
simultaneously, and implemented an enhancement of the
popular NSGA-II [12]. Murata and Itai [26] proposed a
two-fold evolutionary multi-objective algorithm for solv-
ing a variant of the VRP in which customers have normal
and high demands. They also proposed a similarity mea-
sure to show the importance of examining characteristics
of solutions to both problems.

Le Bouthillier and Crainic [27] presented a parallel co-
operative multi-search method for the VRPTW based on
the solution warehouse strategy, in which several search
threads cooperate by asynchronously exchanging informa-
tion on the best solutions identified. Each of these methods
implemented a different meta-heuristic, an EA or a tabu
search procedure [28].

Homberger and Gehring [29] proposed a two-phase hy-
brid meta-heuristic to solve the VRPTW, in which the
first phase aims at minimizing the number of routes by
means of a (µ,λ)-evolution strategy [30], and the second
phase minimizes the total distance using a tabu search al-
gorithm.

Most recently, Tan et al. [31] and Ombuki et al. [32]
considered the VRPTW as a bi-objective optimization prob-
lem, minimizing the number of vehicles and the total travel
distance, and used a GA for solving it. The former used
the dominance rank scheme to assign fitness to individu-
als, designed a problem-specific crossover operator called
route-exchange crossover, and used a multi-mode muta-
tion which considered swapping, splitting and merging of
routes. They also used three local search heuristics that
were applied every 50 generations. The latter proposed
the genetic operators best cost route crossover and con-
strained route reversal mutation, which is an adaptation
of the widely used inversion method.

Only a couple of these past studies explicitly consid-
ered using a method to measure the similarity of solu-
tions, and just one has utilized this information with the
aim of preserving population diversity. It is also worth
noting that, although many widely-known and successful
multi-objective evolutionary approaches, such as SPEA2
[33] and NSGA-II [12], incorporate population diversity
preservation techniques, they are not suitable here because
they require the definition of niche spaces, which would be
problematic since most good solutions of the VRPTW re-
side in a very small range of vehicle numbers [32].

In our own previous work [34], it became clear that
the lack of population diversity was a crucial factor lead-
ing EAs to become stuck in suboptimal VRPTW solu-
tions, so we proposed a method to restrict the number of
clones. That algorithm eventually forced the population
to have no clones at all, but the solutions were still not
good enough. Consequently, we then designed a new Bi-
objective EA (BiEA) [35] which incorporated a similarity
measure, based on Jaccard’s similarity coefficient (defined
in Section 4.5), to select parents for the recombination pro-
cess in a way that preserved a higher population diversity
[36], and that enabled good solutions to be obtained for
a set of publicly available benchmark instances. Unfortu-
nately, it was not possible to compare the results against
other approaches in a fully multi-objective manner, be-
cause there were no publicly available results showing val-
ues for all the objectives involved for each instance.

We then went on to test our BiEA with the widely-
used Edit distance [37] replacing our Jaccard measure, and
established that both measures resulted in similar perfor-
mance, but the Edit distance required much longer execu-
tion times [38]. For that reason, this paper will use the
Jaccard’s similarity measure.

The remainder of this paper presents an improved ver-
sion of our BiEA that addresses the limitations identified
by the earlier work. The new algorithm has more effec-
tive recombination and mutation processes, a more ex-
tensive series of experiments are carried out, and there
is an extended analysis of the results, including compar-
isons with those from NSGA-II using fully multi-objective
performance metrics. It is also shown how the algorithm
can easily optimize more than two objectives with equally
successful results.
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Figure 2: General process of the proposed MOEA.

4. Improved Multi-Objective EA for solving the

VRPTW

This section presents the proposed algorithm for solv-
ing the multi-objective VRPTW, and the crucial solution
similarity measure that enables it to provide a better ap-
proximation to the full Pareto front.

4.1. The Multi-Objective EA (MOEA)

EAs are optimizers based on Darwin’s theory of evo-
lution, where the fittest individuals survive and produce
offspring to populate the next generation [39]. A popula-
tion of individuals is maintained, in which each individual
is a problem solution, and fitness is some appropriate mea-
sure of how good an individual solution is. The operation
of a particular EA is defined by a number of procedures
or operators, and crucial to this is how the offspring are
created from the parents. The general process of the pro-
posed MOEA is presented in the flowchart in Figure 2, and
the specific features are described below.

4.2. Solution encoding

Since the VRPTW solutions are lists of routes, which
are themselves lists of customers, the appropriate encoding
here is a list of lists. A solution encoding simply lists the
customer identifiers in the order they are serviced.

4.3. Initial population

As is standard practice for EAs, the initial population
is chosen randomly with the aim of covering the entire
search space. Thus the MOEA here starts with a set of
popSize solutions, each being a randomly generated fea-
sible route constructed as follows: First, a customer is

Figure 3: Fitness assignment to solutions.

selected at random and placed as the first location to be
visited on the first route. Then, a different random cus-
tomer is chosen and, if the capacity and time constraints
would be met, it is placed on the current route after the
previous customer. If any of the constraints are not met, a
new route is created and this customer is the first location
to be visited on that route. This process is repeated until
all customers have been assigned to a route.

4.4. Fitness assignment

At each generation of evolution, the objective functions
are evaluated for every solution in the population, and
each individual is assigned a fitness value which drives the
natural selection process. When solving a single-objective
problem, fitness is easily assigned to an individual accord-
ing to its single objective function evaluation. In the multi-
objective case, however, this assignment cannot be done
straightforwardly because there is naturally more than one
possible objective that can be used, and a whole set of solu-
tions is required that reflects the trade-offs between them.
One approach to assigning fitness to solutions, that satis-
fies the current requirements, is the non-dominance sorting
criterion of Deb et al. [12]. In this, the population is di-
vided into non-dominated fronts, and their depth specifies
the fitness of the individuals belonging to them, as shown
for two objectives in Figure fig:fitness. In this case, the
lower the front, the fitter the solution.

4.5. Solution similarity measure

Maintaining population diversity is crucial for EAs, in
that their success depends on the avoidance of premature
convergence and the balancing of the trade-off between
exploration and exploitation of the search space [39]. For
multi-objective algorithms, it is also important that the
final population contains solutions that represent the full
Pareto front, rather than just a small portion of it. Diver-
sity here not only refers to the number of distinct solutions
in the population, but also to how different they are. It is
usually easy to make sure that there are no duplicates in
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the population, but evaluating solution spread and using it
to boost the diversity generally requires the development
of encoding-specific tools.

To accomplish this with the VRPTW encoding, a sim-
ilarity measure was designed based on Jaccard’s similarity
coefficient, which measures the similarity of two sets as the
ratio of the cardinalities of the intersection and the union
of those sets [35]. Formally, the similarity of sets A and B
is

J(A, B) =
|A ∩ B|

|A ∪ B|
. (17)

Thus, if both sets contain the same elements, the inter-
section equals the union, and the similarity is 1. If the
two sets do not share any elements, the intersection is the
empty set, and the similarity is 0.

The natural way to implement this measure for the
VRPTW is to consider each solution R as the union of a
set of segments or arcs (u(i, k), u(i + 1, k)), so

R =

K
⋃

k=1

Nk
⋃

i = 0

{(u(i, k), u(i + 1, k))} . (18)

Then the similarity of two solutions equals the ratio be-
tween the number of arcs that are common to both solu-
tions and the total number of arcs used by them. Denoting
yijR = 1 if arc (i, j) is traversed by any vehicle in solution
R, and 0 otherwise, the similarity ςRQ between solutions
R and Q is then

ςRQ =

∑

i,j ∈ V

yijR · yijQ

∑

i,j ∈ V

sign (yijR + yijQ)
, (19)

in which the term in the sum in the numerator will only
equal 1 if arc (i, j) is used by both solutions, while that
in the denominator will equal 1 if either solution uses it.
Arcs (i, j) and (j, i) are considered to be different, even if
their cost is the same. Thus, if solutions R and Q are the
same, ςRQ = 1, while if they are two completely different
solutions with no arc in common, ςRQ = 0. The algorithm
to compute this Jaccard similarity is O(N).

For the purposes of the proposed MOEA, a measure of
how similar a given solution is to the rest of the evolution-
ary population is also required. If P is the population of
solutions, and |P | = M is the population size, the similar-
ity σR of solution R ∈ P with the rest of the solutions in
P will be given by the average similarity of R with every
other solution Q ∈ P , that is

σR =
1

M − 1

∑

Q ∈ P\{R}

ςRQ . (20)

The total complexity of the algorithm needed to compute
this is O(NM2). Finally,

δ = 1 −
1

M

∑

R ∈ P

σR (21)

i.e. one minus the average solution similarity, defines the
diversity δ of the population of solutions P .

4.6. Parent selection

The evolutionary process requires some stochastic func-
tion for selecting parent individuals from the population,
according to their fitness, to undergo mating (or recom-
bination) to create an offspring. The fittest individuals
should be more likely to be selected, but low-fitness indi-
viduals should also be given a small chance, with the aim
of not allowing the algorithm to be too greedy. A standard
tournament method [40] achieves this by choosing Tsize in-
dividuals randomly from the population and selecting the
best individual from this group to be a parent.

A crucial difference of the MOEA proposed here to
most EAs is that, in addition to using fitness to select
good parents, it also uses the similarity measure to main-
tain population diversity. The first of two parents is cho-
sen on the basis of fitness, and the second on the basis of
similarity.

4.7. Recombination

Recombination is the process of generating one or more
offspring from the selected parents, preferably in a manner
that maintains and combines the desirable features from
both parents. This is carried out with probability γ, oth-
erwise the fittest individual is simply copied into the off-
spring population, or if both parents have the same fitness,
the parent with lowest similarity is copied.

The MOEA here is designed to randomly select and
preserve routes from both parents. First, a random num-
ber of routes are chosen from the first parent and copied
into the offspring. Then all those routes from the second
parent which are not in conflict with customers already
copied from the first, are copied into the offspring. The
recombination of two example parents is shown in Figure
4, with both routes on the left from the first parent se-
lected to be copied into the offspring, and then only the
route on the right can be copied from the second parent, as
the other two contain customers already present in the off-
spring. Finally, if there remain any unassigned customers,
these are allocated, in the order they appear in the sec-
ond parent, to the route where the lowest travel distance
is achieved, as in the example shown in Figure 4. If there
is no way to insert such a remaining customer into the ex-
isting routes without violating a constraint, a new route is
created.

4.8. Mutation

Once an offspring has been generated, a further stochas-
tic change or mutation is applied with probability µ. This
involves three basic functions and three operators. The
three functions are:

• selectRoute which stochastically selects a route ac-
cording to the ratio of the travel distance to the
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Figure 4: The recombination process.

number of customers, i.e. routes with a larger travel
distance and fewer customers are more likely to be
selected.

• selectCustomer which stochastically selects one cus-
tomer from a specific route according to the average
length of its inbound and outbound arcs, i.e. cus-
tomers with longer associated travel distances are
more likely to be chosen. A special case exists for the
first and last customers in a route, where only the
outbound and inbound arcs, respectively, are taken
into account.

• insertCustomers which tries to insert, one at a time,
a set of customers into a specific route where the low-
est travel distance is obtained. If no route is speci-
fied, it tests all existing routes.

These functions are used by the mutation operators:

• Reallocation which takes a number of customers from
a given route and allocates them to another. First,
selectCustomer is used to choose two customers from
the route. These are removed from the route, along
with all those customers in between them. Then,
insertCustomers attempts to reallocate the removed
customers into any of the existing routes, including
the one that they were removed from. This operation
is illustrated in Figure 5.

• Exchange which swaps sequences of customers be-
tween two routes chosen by selectRoute. First, select-
Customer chooses two customers from each route.
The sequences of customers between them are then
removed from their route, and insertCustomers at-
tempts to reallocate them into the other route. If
one or more customers cannot be inserted into the
other route, the original routes are preserved. This
operation is illustrated in Figure 6.

• Reposition which uses selectCustomer and insert-
Customers respectively to select one customer from

Figure 5: The reallocation mutation operator.

Figure 6: The exchange mutation operator.

Figure 7: The reposition mutation operator.

a specific route and to reinsert it into the same route.
Figure 7 illustrates this operation.

The mutation process proceeds as follows: Two routes
are chosen using selectRoute. If they are the same route,
the reallocation operation is performed, otherwise the ex-
change operator is executed. Then selectRoute selects an-
other route and the reposition operator is carried out.

4.9. Survival

The final stage of each evolutionary cycle is the selec-
tion of individuals to form the next generation. There are

7



Figure 8: Selection of best individuals for the next generation. The
fourth front is in conflict with the population size, so the least similar
solutions from it are chosen to join the first three fronts.

several obvious possibilities: the offspring population, a
random selection from the combined parent and offspring
populations, or the best individuals from the combined
population. In the first two cases, good-quality individ-
uals are likely to be lost, so the third approach is used
here. The offspring and parent populations are combined
and individual fitnesses determined as described in Section
4.4. Those solutions having the highest fitness, i.e. falling
in the outermost fronts, are taken to survive and form the
next generation. When the population size is exceeded in
the last selected front, similarity is computed for the so-
lutions in that front, and the least similar are chosen, as
shown in Figure 8.

4.10. Repetition

The whole process of parent selection and offspring
generation is repeated for a fixed number of generations
(numGen).

5. Experimental design

This section describes the VRPTW benchmark instances
used to test the proposed MOEA algorithm, and specifies
the associated experimental design.

5.1. Solomon’s benchmark instances

The proposed algorithm was tested on the standard
public benchmark set of Solomon [41], which includes 56
instances of size N = 100 available from Solomon’s web
site1. These instances are categorised as: C1 and C2,
where customers are located in geographical clusters, R1
and R2, where customers are randomly distributed, and
RC1 and RC2, which have a mix of random locations and
clusters. Moreover, instances in sets C1, R1 and RC1 have

1http://w.cba.neu.edu/~msolomon/problems.htm

a short scheduling horizon, i.e. the time constraint acts as a
capacity constraint which, together with the vehicle capac-
ity constraint, allows only a few customers to be serviced
by the same vehicle. In contrast, instances in sets C2, R2
and RC2 have a long scheduling horizon, which, coupled
with large vehicle capacities, permits many customers to
be serviced by the same vehicle [41].

These benchmark instances have been previously stud-
ied in detail, and a recent analysis by Tan et al. [31] sug-
gests that categories C1 and C2 have positively correlating
objectives, which means that the travel cost of a solution
increases with the number of vehicles, whereas many of the
instances in categories R1, R2, RC1 and RC2 were found
to have conflicting objectives.

5.2. Experimental set-up

The MOEA as described above was implemented in
Java and tested on a computer cluster with 384 dual-
processor dual-core 64-bit 2.6 GHz AMD Opteron 2218
nodes running Scientific Linux 5.2. The evolutionary pa-
rameters were set to the following suitable values deter-
mined by preliminary testing:

popSize = 100 γ = 1.0
numGen = 500 µ = 0.1
Tsize = 2

To provide reliable statistics, each version of the algorithm
was run 30 times, with different random number seeds, for
each benchmark instance. The population diversity and
the solutions in the first front were recorded at the end of
every evolutionary generation for later analysis.

6. Analysis of results

The results from the VRPTW experiments were ana-
lyzed from four different perspectives: First, to investigate
the importance of considering the similarity of solutions for
finding diverse and good solutions. Second, to provide an
indication of the number of instances which really do have
conflicting objectives. Third, to show that similar or bet-
ter results are obtained when multiple objectives are mini-
mized simultaneously, rather than when only one objective
is minimized. Finally, to compare the results obtained by
our MOEA with those from previous studies. In partic-
ular, the multi-objective performance metrics are used to
compare the MOEA solutions with those from NSGA-II
[12], which has proved extremely successful for many ap-
plications in the past, and involves features that provide a
useful contrast to the new MOEA.

Initially the MOEA is set up to minimize two objec-
tives, the number of routes and travel distance as in pre-
vious studies, with the results presented in Sections 6.1
to 6.5. Then, to illustrate its use on further objectives,
Section 6.6 presents results for other combinations of two
objectives, and for three objectives.
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Figure 9: Average final population diversity, grouped by instance
category, preserved by methods LA, F and LP.

6.1. How important is the similarity measure?

As explained earlier, two criteria are used in the MOEA
recombination process: fitness to select the first parent,
and similarity to select the second. To verify the impor-
tance of using similarity, a control case and two variations
were tested. These had the second parent chosen accord-
ing to fitness (referred to as method F), or least similarity
on average (method LA), or least similarity to the first
parent (method LP). To measure the contribution of the
recombination process to the population diversity in each
case, the mutation probability µ was temporarily set to
zero to prevent it interfering. Figure 9 shows the average
final population diversity (defined by equation 20) result-
ing from the three methods for each instance category. All
three methods end up with similar population diversity for
categories C1 and C2 because the customers in these in-
stances are geographically clustered, which renders diverse
solutions of little advantage. For all the other categories,
method LA preserves significantly higher population diver-
sity. This is because recombination with the least similar
individual in the population forces the algorithm to ex-
plore wider regions of the search space.

The aim of maintaining diversity was to obtain better
Pareto approximations, and this needed to be tested ex-
plicitly. Table 1 presents the Pareto approximation results
using F, LP and LA. For each instance, all the solutions
in the resulting non-dominated set are taken from all rep-
etitions, and the average for each objective is computed.
Then, these are averaged over each instance category. For
each method and category is shown the average number
of routes (upper), the average travel distance (middle),
and the average execution time in seconds for a run of
500 generations (lower). The last column presents the to-
tal accumulated sum, indicating the average total number
of routes, the average total travel distance, and the aver-
age total execution time for all 56 instances (which is the
standard measure in the literature when comparing results
for this problem). The last two rows show the percentage
difference between the results from method LA and those
from the method that obtained the lowest value for each
objective. Method LA achieved the smallest number of
routes and shortest travel distance for categories C1, R1,
R2, RC1 and RC2, and accumulated. Method LP obtained
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Figure 10: Number of instances with conflicting objectives (shaded
bars), found by MOEA and Tan et al. [31], out of the total number
of instances in each category (clear full bars).

solutions with the lowest number of routes and travel dis-
tance for category C2, but the percentage improvements
over method LA in these cases was very small.

It is clear that including the similarity measure in the
recombination phase of the MOEA is accomplishing its
objective. Method LA preserves a higher population di-
versity, and the resulting quality of the solutions is better,
with fewer routes and shorter travel distances. This ap-
proach will therefore be adopted for the remainder of this
study.

6.2. Is VRPTW a multi-objective problem?

The next issue is whether the VRPTW really does need
to be treated as a multi-objective problem. That is, are
the problem instances such that there are trade-offs that
result in more than one solution in the Pareto front, and
does the MOEA have more than one solution in its Pareto
approximation sets?

Figure 10 shows the number of instances for which the
MOEA found approximation sets with multiple solutions
(i.e. instances with conflicting objectives), out of the to-
tal number of instances in each category. For compari-
son, the corresponding numbers for the algorithm of Tan
et al. [31] are also shown, which uses local search heuristics
to improve its performance, rather than involving a sim-
ilarity measure to maintain diversity. For all categories,
MOEA found more approximation sets with multiple so-
lutions than the other algorithm, except for categories C1
and C2 which both approaches agreed did not include any
instances with conflicting objectives. In total, 29 instances
out of 56 were found by MOEA to have incompatible ob-
jectives, and only two of those are dominated by the solu-
tions found by the algorithm of Tan et al. [31].

Figure 11 presents bar graphs showing the number of
instances for different sizes of Pareto approximation, for
MOEA and for the best-known solutions for each instance.
The 29 multiple-solution instances found by MOEA have
2, 3, 4 and 5 solutions in their Pareto approximation. If the
best-known solutions are considered along with those from
MOEA, the number of instances with conflicting objectives
increases up to 34, with the number of instances with one
and two solutions decreasing, and those with three, four
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Method C1 C2 R1 R2 RC1 RC2 Accumulated

10.00 3.02 13.08 3.51 13.04 4.12 447.07
F 898.93 615.79 1270.39 1003.81 1449.74 1179.44 60336.79

72.91 74.98 98.25 118.80 91.61 123.30 5461.10

10.00 3.01 12.89 3.50 12.73 4.11 441.98
LP 866.37 608.20 1237.75 985.97 1411.00 1159.13 58922.65

110.41 90.82 159.39 151.99 145.83 156.14 7720.60

10.00 3.02 12.87 3.48 12.60 4.04 439.97
LA 851.71 609.72 1221.34 981.41 1394.76 1154.47 58388.60

82.51 76.40 149.84 137.06 126.73 142.92 6816.84

% difference number of routes 0.00 0.12 0.00 0.00 0.00 0.00 0.00
% difference travel distance 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Table 1: Mean number of routes, travel distances and execution times, averaged over instance categories, for solutions in the Pareto approxi-
mations obtained with methods F, LP, and LA.
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Figure 11: Number of instances for each number of solutions in the
Pareto approximations found by MOEA, and considering the best-
known solutions.

and five increasing. This confirms the multi-objective na-
ture of the VRPTW, and indicates the extent to which
MOEA is finding the best Pareto approximations.

6.3. Single- versus bi-objective optimization

The next question to consider is how well the MOEA
performs compared to single-objective optimizers. To test
this fairly, the single objective EA used was MOEA itself,
but set to minimize only one objective. Table 2 presents
the results from MOEA, along with those from the single-
objective EA versions, in the same format as Table 1 ex-
cluding the execution times. The EA minimizing only the
number of routes is labeled EAr, and the one minimizing
only the travel distance is EAd. For each instance is taken,
from each of the 30 repetitions, the solution with the small-
est number of routes and the one with the shortest travel
distance, and from these are computed the mean value for
each objective, and the averages of these over each cate-
gory. The numbers of problem instances for which there
were significant improvements (shown by a t-test at 0.05
significance level) over the corresponding multi- or single-
objective case are shown in brackets. The last two rows
show for each category the percentage difference between
the number of routes from MOEA and EAr, and the travel
distances from MOEA and EAd, respectively.

The MOEA finds the solutions with the overall smallest
number of routes for all categories and accumulated, with

percentage improvements over EAr ranging from nearly
2% up to more than 5%. EAr has significantly better
performance on only 4 problem instances, compared with
22 for MOEA. It seems that since EAr focuses on only
one of the two objectives, it does not benefit from the
improvement that can be achieved by simultaneously min-
imizing the travel distance as MOEA does. The results
achieved indicate that the single-objective algorithm here
has a higher tendency to become stuck in sub-optimal so-
lutions.

Regarding the travel distance, the differences between
the results from MOEA and EAd are smaller and less con-
sistent. For problem categories C1, C2, R1 and RC1, there
is not much difference between MOEA and EAd, but for
categories R2 and RC2 the single objective EAd is signif-
icantly better than MOEA on 13 problems instances, and
significantly worse on none. In this case, the generation
of a good Pareto approximation by MOEA does not help,
and can actually lead to worse performance. Of course,
it would be trivial to run both EAd and MOEA and in-
corporate any better solution from EAd into the Pareto
approximation obtained by MOEA, so one can easily have
the best of both approaches.

6.4. Comparison with previous single-objective results

In previous VRPTW studies, the travel distance has
been used as the standard benchmark for comparing the
performance in single-objective optimization. Hence, this
section will follow that and take best to be the solution
with lowest travel distance.

Table 3 presents the solutions with the lowest travel
distances from our MOEA, as well as those from six pre-
vious studies, in the same format as as Table 1. For each
instance, the solution with the shortest travel distance is
taken from the 30 runs, and the corresponding number of
routes and travel distance is averaged over each instance
category. For categories C1 and C2, MOEA achieved sim-
ilar results to the previously published studies, except for
the travel distance in C2, where it is only 0.08% higher.
The lowest number of routes for the other categories, as
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Algorithm C1 C2 R1 R2 RC1 RC2 Accumulated

10.51 3.15 13.02 3.18 12.61 3.63 440.88
EAr (0) (0) (1) (0) (3) (0) (4)

1732.13 932.61 1557.11 1464.75 1702.98 1759.59 85548.13

10.00 3.00 13.14 3.94 12.98 4.67 456.18
EAd 834.37 591.62 1204.32 916.35 1372.12 1063.30 56257.32

(0) (0) (1) (8) (1) (5) (15)

MOEA

10.00 3.00 12.64 3.09 12.36 3.54 426.85
(4) (3) (8) (1) (5) (1) (22)

832.55 591.74 1205.04 926.17 1372.96 1076.72 56472.66
(1) (0) (0) (0) (1) (0) (2)

% difference number of routes 5.11 5.14 3.73 2.24 2.50 2.53 3.29
% difference travel distance 0.22 −0.02 −0.06 −1.03 −0.08 −1.14 −0.38

Table 2: Mean smallest number of routes and shortest travel distances, averaged over instance categories, for solutions obtained with algorithms
EAr, EAd and MOEA. The numbers in brackets indicate the number of problem instances for which there is significant improvement over
the corresponding multi- or single-objective algorithm.

well as the accumulated, was obtained by Le Bouthillier
and Crainic [27], Homberger and Gehring [29], and Pisinger
and Ropke [42], but MOEA found solutions with lower
travel distances than them. Solutions from the hybrid
GA of Jung and Moon [23] have the lowest travel dis-
tances for categories R1, R2, RC1 and RC2, and accumu-
lated, where results from MOEA are 0.62%, 2.22%, 0.34%,
3.23%, and 1.09% higher respectively, though MOEA has
smaller numbers of routes.

Looking at the best known results for the individual
instances, MOEA found solutions for three instances that
have lower travel distance than the best-known. Moreover,
it achieved competitive solutions for another 17 instances
for which the travel distance is only slightly (< 2%) above
the best-known, with the number of routes lower in six of
them and equal in the rest. MOEA also found 17 solutions
that are equal to the best-known for instances in categories
C1 and C2. These results show that, overall, the single
objective performance of our MOEA is comparable to the
best of the previously published algorithms.

Finally in this section, the MOEA solutions are com-
pared against the optimal solutions found by exact meth-
ods as presented on Solomon’s web site2. Here the total
travel distance is the primary objective and the distances
are truncated to one decimal place [42]. Table 4 presents
a summary of the MOEA results, taking into consider-
ation the truncation criteria, and also covering further
benchmark instances with smaller numbers of customers
(N = 25 and 50). The second column shows the number
of instances out of 56 that have been solved to optimality,
and the third column gives the number of optimal solu-
tions found by MOEA. The next two columns show the
percent average difference between the optimal and the
results from MOEA, first over all instances, and then only
over the instances for which MOEA did not find the op-
tima. The last column shows the average execution time in
seconds for a run of 500 generations. These results indicate

2http://w.cba.neu.edu/~msolomon/problems.htm

N Opt. MOEA % Diff % Sub. Time

25 56 56 0.00 0.00 11.47

50 53 39 0.23 0.88 29.76

100 37 17 0.81 1.50 116.73

Table 4: Comparison of results from MOEA against optima obtained
by exact methods, for 56 instances of size N = 25, 50 and 100.

the ability of MOEA to find optimal solutions for instances
of different sizes, and show that the gap between the op-
timal results and those from MOEA is narrow (≤ 1.5%)
even for the largest instances.

6.5. Multi-objective performance comparisons

To evaluate the performance of our MOEA as a multi-
objective approach, NSGA-II [12] was implemented for
comparison purposes, and the multi-objective performance
metrics MH and MC (defined earlier in equations 15 and
16) were computed. The NSGA-II implementation used
the same solution representation, with the same crossover
and mutation operators, as the MOEA. The difference lies
in the way selection is carried out in the mating and sur-
vival processes. MOEA selects one parent according to
fitness and the other according to the similarity, in con-
trast to NSGA-II which uses fitness as the only criteria for
the selection of both parents. MOEA considers similarity
to identify which solutions are taken to the next genera-
tion, while NSGA-II utilizes the crowding distance which
does not involve any routing information at all.

Computing the hypervolume metric MH requires an ap-
propriate reference points z to be set. Since each instance
has an obvious maximal solution, with largest number of
routes equal to the number of customers N , and longest
travel distance Dmax equal to twice the sum of the dis-
tances of all customers from the depot, the reference point
for each instance was set at z = (N, Dmax). For each prob-
lem instance, there is a set of 30 MH values from the 30
runs performed, with each value computed using the non-
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Author C1 C2 R1 R2 RC1 RC2 Accumulated

Jung and Moon [23] 10.00 3.00 13.25 5.36 13.00 6.25 486.00
828.38 589.86 1179.95 878.41 1343.65 1004.21 54779.02

Le Bouthillier and Crainic [27] 10.00 3.00 12.08 2.73 11.50 3.25 407.00
828.38 589.86 1209.19 960.95 1386.38 1133.30 57412.37

Homberger and Gehring [29] 10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.38 1212.73 955.03 1386.44 1108.52 57192.00

Tan et al. [31] 10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ombuki et al. [32] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

Pisinger and Ropke [42] 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.38 589.86 1212.39 957.72 1385.78 1123.49 57332.00

Garcia-Najera and Bullinaria [35] 10.00 3.00 12.50 3.18 12.38 4.00 430.00
830.64 589.86 1191.22 926.97 1349.81 1080.11 56125.35

MOEA 10.00 3.00 13.08 4.00 12.63 5.38 459.00
828.38 589.86 1187.32 897.95 1348.22 1036.65 55378.61

% difference number of routes 0.00 0.00 9.85 46.52 9.78 65.38 13.33
% difference travel distance 0.00 0.08 0.62 2.22 0.34 3.23 1.09

Table 3: Travel distance and number of routes, averaged over categories, for the best solutions found in previous studies and by MOEA.

Algorithm C1 C2 R1 R2 RC1 RC2

NSGA-II 0.77 0.87 0.66 0.79 0.69 0.81
(0) (0) (0) (0) (0) (0)

MOEA 0.81 0.74 0.71 0.76 0.75 0.81
(1) (0) (10) (3) (8) (2)

Table 5: Hypervolume metric values, averaged over instance cate-
gories, for solutions obtained with NSGA-II and MOEA. Shown in
brackets are the number of instances for which the result is signifi-
cantly better than the other approach.

dominated sets achieved by MOEA and NSGA-II starting
from the same initial populations. Table 5 shows the hy-
pervolume metric averages for each category and the num-
bers of instances with significant improvements over the
other approach. For categories C1 and C2 there is little
difference between the two algorithms. For categories R1
and RC1 the MOEA exhibits significant improvement over
NSGA-II for most problem instances, and for categories
R2 and RC2 the MOEA has significant improvement for
some problem instances. There are no problem instances
for which NSGA-II performs significantly better than the
MOEA.

To apply the coverage metric, for each problem in-
stance the coverage values MC(MOEAi, NSGA-IIj) and
MC(NSGA-IIj , MOEAi) were computed for all pairs of runs
(i, j = 1, . . . , 30), that is 900 MC values each. Table 6
presents the averages of the MC(Xi, Yj) values over all the
instances within each problem category, and the numbers
of instances for which there was significant improvement
over the other approach. Again there is little difference in
performance for categories C1 and C2, but here the MOEA
shows significant improvement over NSGA-II for the large
majority of instances in all the other categories.

To understand the improvements, it is instructive to

Algorithm C1 C2 R1 R2 RC1 RC2

NSGA-II 0.81 0.91 0.13 0.36 0.14 0.33
(0) (1) (0) (1) (0) (0)

MOEA 0.89 0.90 0.74 0.67 0.72 0.60
(4) (1) (12) (10) (8) (8)

Table 6: Coverage metric values, averaged over instance categories,
for solutions obtained with NSGA-II and MOEA. Shown in brackets
are the number of instances for which the result is significantly better
than the other approach.

look at the population diversity for both algorithms. Fig-
ure 12 presents six plots showing the mean population di-
versity and variance on the vertical axis for each instance
category, as a function of the first 500 generations on the
horizontal axis. It is clear that the MOEA preserves a
higher diversity for categories R1, R2, RC1 and RC2 for
which improvements over NSGA-II were observed, but not
for the non-multi-objective categories C1 and C2 for which
there were not. The different behavior for R1 and RC1 to
that of R2 and RC2 is also consistent with that distinction
in the hypervolume results and the increased numbers of
solutions in the MOEA Pareto approximations compared
to NSGA-II. Moreover, the MOEA diversities present a
more gentle drop in all categories except C2, suggesting
that MOEA performs a wider exploration of the search
space before settling on its final solutions.

As an illustration of the consequences of this higher di-
versity, Figure 13 shows the solutions in the non-dominated
set found by MOEA for the typical problem instance R201.
The routes forming each solution are displayed in sepa-
rate boxes to enable a clearer comparison. Although some
routes contain similar patterns, no route is repeated across
solutions. One can also see that the second and third
routes in solution 1 contain patterns from at least two
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Figure 12: Average population diversity for each instance category
as a function of generation, for MOEA and NSGA-II.

routes from each of the other solutions, meaning that, as
well as having routes with different customers forming the
solutions, the sequences of customers are also diverse.

In the past, fully multi-objective comparisons between
algorithms have been hampered by a lack of published so-
lution details. To remedy this for future algorithms, Table
7 presents the full details of the number of routes (columns
R) and travel distances (columns D) for the solutions in
the Pareto approximations obtained by our MOEA for the
26 instances in which the two objectives are in conflict.

6.6. Tri-objective performance comparisons

This section illustrates the application of our MOEA to
other objectives (in particular, the delivery time) and for
optimizing more than two objectives at once. The number
of routes (R), travel distance (D) and delivery time (T)
were minimized in pairs, giving three objective settings
(RD, RT and DT), and with all three of them together
(RDT). The results from each of these four settings were
compared using the coverage performance metric MC as in
the previous section (but using all three objectives).

The comparison results presented in Table 8 lead to the
following observations: For categories C1 and C2 there are

Instance R D R D

R101 20 1643.18 19 1650.80

R102 18 1473.73 17 1487.31

R103 14 1219.10 13 1299.18

R104 11 995.87 10 999.82

R105 15 1364.88 14 1377.11

R106 13 1240.41 12 1263.21

R107 11 1080.64 10 1164.14

R109 13 1155.73 12 1156.05

R201 7 1179.22 6 1185.03
5 1194.78 4 1253.23

R202 5 1055.66 4 1081.60

R203 4 910.55 3 959.75

R205 4 959.74 3 1030.92

R206 4 890.90 3 924.64

R208 3 715.37 2 736.47

R209 4 876.69 3 921.37

R210 4 933.84 3 969.61

RC102 14 1466.97 13 1492.70

RC105 15 1519.44 14 1540.18

RC106 13 1391.76 12 1394.43

RC107 12 1215.94 11 1235.37

RC108 11 1133.69 10 1166.03

RC201 9 1297.29 7 1304.09
6 1319.16 5 1335.31
4 1415.00

RC202 6 1123.12 5 1132.57
4 1162.54

RC203 4 957.08 3 1058.33

RC204 4 796.11 3 801.90

RC205 7 1226.27 6 1228.09
5 1251.58 4 1304.93

RC206 4 1091.42 3 1257.15

RC207 5 994.00 4 1001.85
3 1104.95

RC208 4 807.92 3 834.88

Table 7: Number of routes (R) and travel distance (D) for the in-
stances where both objectives are in conflict, corresponding to the
solutions in the Pareto approximations obtained by MOEA.

mixed results, with all settings having a high coverage of
each other. Otherwise, the coverage of RT, DT and RDT
by RD is low (≤ 14%), and the coverage of RD, DT and
RDT by RT is nearly zero. The most interesting cases
are settings DT and RDT, as their coverage of RD and
RT is much higher. Between them, the coverage of DT by
RDT is larger than the coverage of RDT by DT. These
results indicate that setting MOEA to minimize all three
objectives does lead to better non-dominated solutions.

Results from our MOEA and from NSGA-II for the
tri-objective RDT case are compared in Table 9. Again
both algorithms show similar coverage of each other for
instances in categories C1 and C2. For all instances in
categories R1 and RC1, solutions in the non-dominated
sets found by MOEA have significantly higher coverage of
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(a) Solution 1: 4 routes

(b) Solution 2: 5 routes

(c) Solution 3: 6 routes

(d) Solution 4: 7 routes

Figure 13: Solutions in the non-dominated set found by MOEA for typical problem instance R201. For clarity, each route for each solution
is displayed in a separate box.

those obtained by NSGA-II. For category R2, MOEA has
a significant higher coverage in five instances, and NSGA-
II has a significant higher coverage in four. Finally, for
category RC2, MOEA has a significant higher coverage in
seven instances, and NSGA-II in none. These results are
reflected in increased numbers of solutions in the MOEA
Pareto approximations over NSGA-II. Overall then, it can
be concluded that the new MOEA has significantly better
performance than NSGA-II.

7. Conclusions

This paper has proposed an improved Multi-Objective
Evolutionary Algorithm (MOEA) for solving the Vehicle
Routing Problem with Time Windows (VRPTW). It can
simultaneously minimize any number of objectives, and
has been tested here on the number of routes, travel dis-
tance and delivery time. The key improvement is the in-
troduction of a measure of similarity between solutions
which is primarily used to select the second parent for the
recombination process. Since the first parent is selected

according to fitness, as usual in evolutionary algorithms,
the resulting offspring inherits the good quality from this
parent, while exploring non-common areas of the search
space from the second parent. Consequently, the solutions
that emerge are more diverse, tending to cover more than
one value in the number of routes dimension, and better
approximating the whole Pareto front.

The new MOEA was tested using a popular benchmark
set of 56 VRPTW problem instances, approximately half
of which have conflicting objectives. An initial series of
experiments were carried out to explore the effect the sim-
ilarity measure had on population diversity and solution
quality. Three methods for selecting the second parent
were compared, including simple fitness, and this demon-
strated the high importance that the similarity measure
had in maintaining diversity and arriving at better solu-
tions. This established the best approach for the remain-
der of the study; and the implication that it would work
best on problems with conflicting objectives (problem cat-
egories R1, R2, RC1 and RC2), and not offer much im-
provement on others (C1 and C2), was later confirmed.
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Obj. Covers C1 C2 R1 R2 RC1 RC2

RD

RT
0.87 0.64 0.04 0.01 0.05 0.02
(6) (3) (6) (1) (4) (2)

DT
0.82 0.72 0.08 0.11 0.14 0.08
(1) (0) (1) (4) (0) (0)

RDT
0.82 0.72 0.08 0.11 0.13 0.08
(1) (1) (1) (3) (0) (1)

RT

RD
0.68 0.55 0.01 0 0.01 0.01
(0) (1) (2) (0) (2) (0)

DT
0.68 0.63 0.03 0.04 0.06 0.02
(0) (0) (0) (0) (0) (0)

RDT
0.68 0.62 0.04 0.03 0.07 0.03
(0) (0) (0) (0) (0) (0)

DT

RD
0.91 0.9 0.31 0.14 0.36 0.21
(2) (3) (11) (5) (8) (6)

RT
0.97 0.92 0.49 0.42 0.46 0.48
(5) (4) (12) (11) (8) (8)

RDT
0.91 0.88 0.43 0.4 0.42 0.42
(2) (2) (4) (4) (2) (3)

RDT

RD
0.89 0.91 0.32 0.16 0.38 0.23
(3) (3) (11) (6) (8) (7)

RT
0.97 0.93 0.52 0.44 0.49 0.44
(6) (3) (12) (11) (8) (8)

DT
0.89 0.89 0.44 0.43 0.46 0.41
(2) (1) (5) (5) (6) (3)

Table 8: Coverage metric values, averaged over instance categories,
for MOEA solutions obtained with objective sets RD, RT, DT and
RDT. In brackets are the numbers of instances for which the result
is significantly better than the reverse case.

Algorithm C1 C2 R1 R2 RC1 RC2

NSGA-II 0.81 0.87 0.14 0.37 0.13 0.35
(0) (2) (0) (4) (0) (0)

MOEA 0.88 0.87 0.66 0.55 0.63 0.49
(4) (2) (12) (5) (8) (7)

Table 9: Coverage metric values, averaged over instance categories,
for solutions obtained with NSGA-II and MOEA optimizing all three
objectives (RDT). In brackets are the numbers of instances for which
the result is significantly better than the other approach.

The performance of the algorithm was evaluated from
three different perspectives: First the MOEA results were
compared with those from single-objective EAs, showing
that MOEA was able to find solutions with smaller num-
bers of routes and similar or shorter travel distances. Sec-
ond, the MOEA results were compared with those from
previously published single- and bi-objective algorithms,
showing that MOEA found three solutions better than the
best-known, and others that were highly competitive in the
sense that the travel distance was no more than 2% higher,
but the number of routes was the same or smaller. Fi-
nally, and perhaps most importantly, the new MOEA was
evaluated using two multi-objective performance metrics,
hypervolume and coverage, showing significantly better re-
sults than the well-known evolutionary multi-objective op-

timizer NSGA-II for both the bi-objective and tri-objective
cases.

There remains considerable scope for further develop-
ment of the MOEA approach proposed here. Although the
similarity measure used by the MOEA has been shown in
this paper to result in improved performance, it still only
considers the arcs used in the routes in a solution and
not the sequence of them. Consequently, further improve-
ments might be possible by developing more refined sim-
ilarity measures, that provide performance improvements
that justify the inevitable increased computational costs.
There is also scope to explore the extension of the MOEA
to the optimization of further objectives, such as the route
balance [25]. Finally, there remains the need to test fur-
ther the scalability of MOEA to larger VRPTW problem
instances, and different variants of the routing problem.
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