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Abstract: In a previous paper we presented a systematic computational study of the extraction 
of semantic representations from the word-word co-occurrence statistics of large text corpora.  
The conclusion was that semantic vectors of Pointwise Mutual Information (PMI) values from 
very small co-occurrence windows, together with a cosine distance measure, consistently 
resulted in the best representations across a range of psychologically relevant semantic tasks.  
This paper extends that study by investigating the use of three further factors, namely the 
application of stop-lists, word stemming, and dimensionality reduction using Singular Value 
Decomposition (SVD), that have been used to provide improved performance elsewhere.  It 
also introduces an additional semantic task and explores the advantages of using a much larger 
corpus.  This leads to the discovery and analysis of improved SVD based methods for 
generating semantic representations (that provide new state-of-the-art performance on a 
standard TOEFL task) and the identification and discussion of problems and misleading 
results that can arise without a full systematic study. 

Introduction 

There is considerable evidence that simple word-word co-occurrence statistics from large text corpora are 
able to capture certain aspects of word meaning, and a number of different approaches for doing that have 
been proposed (e.g., Schütze, 1993; Lund & Burgess, 1996; Landauer & Dumais, 1997; Patel, Bullinaria 
& Levy, 1997). These early ideas continue to be refined and extended to produce increasingly 
sophisticated semantic representations (e.g., Griffiths, Steyvers & Tenenbaum, 2007; Jones & Mewhort, 
2007; Baroni & Lenci, 2010; Honkela, Hyvärinen & Väyrynen, 2010; Zhao, Li & Kohonen, 2011). This 
is relevant to psychological theory, both as a demonstration that aspects of lexical semantics can be 
learned from exposure to text and as a method of generating feature-like representations of word meaning 
that can be utilized in computational models, and is also relevant to practical text processing applications.  
In an attempt to identify a best general approach, Bullinaria & Levy (2007) reviewed the past work in this 
area and presented results from a systematic series of computational experiments designed to examine 
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how different statistic collection details affect the performance of the resultant co-occurrence vectors as 
semantic representations for a range of semantic tasks.  While document-based Latent Semantic Analysis 
(LSA) has proved more useful for many information retrieval applications (Landauer et al., 2007; 
Landauer & Dumais, 2008), for generating representations of lexical semantics, the simple word co-
occurrence approach discussed here performs better (Landauer & Dumais, 1997; Bullinaria & Levy, 
2007).  

The Bullinaria & Levy (2007) study set out a general framework for generating the semantic vectors, 
and then explored how the details affected their performance.  The key features investigated were the 
nature of the “window” used for the co-occurrence counting (i.e., its type and size), the nature of the 
statistics collected (i.e., raw conditional probabilities, ratios with expected values, or pointwise mutual 
information), the vector space dimensionality (i.e., using only the D context words of highest frequency-
of-occurrence), the size and quality of the corpus (i.e., professionally created and broadly sampled corpus, 
or news-group text), and the semantic distance metric used (i.e., Euclidean, City-block, Cosine, Hellinger, 
Bhattacharya, or Kullback-Leibler).  The performance of the resultant semantic vectors was tested on a 
series of psychologically relevant semantic tasks: a standard multiple choice TOEFL test (Landauer & 
Dumais, 1997), a related larger scale semantic distance comparison task (Bullinaria & Levy, 2007), a 
semantic categorization task (Patel et al., 1997), and a syntactic categorization task (Levy, Bullinaria & 
Patel, 1998).  The conclusion was that there existed one particular variation that was remarkably 
consistent at producing the best results across all the tasks, and that involved using Positive Pointwise 
Mutual Information (PPMI) as the statistic to collect, very small window sizes (just one context word 
each side of the target word), as many dimensions as possible, and the standard Cosine distance measure 
(Bullinaria & Levy, 2007).  

A limitation of that study was that it did not investigate the effects of three additional factors that 
have all been applied elsewhere (e.g., Rapp, 2003) to apparently provide better performance on the 
standard TOEFL task (Landauer & Dumais, 1997).  Those factors, namely the use of function word stop-
lists, word stemming, and dimensionality reduction using Singular Value Decomposition (SVD), have 
already been explored for standard LSA (Landauer et al., 2007; Landauer & Dumais, 2008), but not for 
the word-word co-occurrence approach studied here, and it will become clear later that what works best 
for one approach, is not necessarily the best for another.  Consequently, these factors are explored in 
detail in this paper.  

Another limitation of the earlier study was that performance was shown there to increase with both 
the quality and size of the corpus, and had not reached ceiling levels with the corpora studied.  Of course, 
using corpora much larger than the number of words that could possibly be read or heard in a human 
lifetime might not be meaningful for modelling human language acquisition, but it is still useful and 
informative to extract the representations that best reflect the relevant aspects of lexical semantics for 
computational cognitive models, and so it makes sense to aim for better performance using larger corpora.  
Moreover, the relatively small size of the previously used corpus limited the range of statistical tests that 
could be carried out on the observed performance differences.  A very large corpus makes it possible to 
measure the variance of the performance of each approach over many independent sub-corpora that are 
still large enough to perform reasonably well.  Consequently, a much larger corpus is used for this study.  
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 The remainder of this paper is organized as follows.  The next two sections describe the approach 
used for generating the semantic vectors and the semantic tasks employed to test their performance.  Then 
some baseline performance results are presented for comparison with the earlier study and with the later 
results.  The effects of the three new factors are then studied in turn: stop-lists, stemming and SVD.  By 
that stage, it has become clear how misleading performance results can arise if a full systematic study is 
not carried out, or if an appropriate model selection approach is not adopted, so those issues are then 
discussed.  Finally, some further experiments are presented that begin to arrive at an understanding of the 
underlying causes of the improved performances achieved, and the paper ends with some conclusions and 
discussion.  

Computing the Semantic Vectors 

The underlying idea is that appropriate vectors of word co-occurrence statistics from large corpora of 
spoken or written text can provide a psychologically relevant representation of lexical semantics.  The 
vectors are derived from basic word co-occurrence counts that are simply the number of times in the 
given corpus that each context word c appears in a window of a particular shape and size s around each 
target word t.  From these it is straightforward to compute the conditional probabilities p(c|t), but better 
semantic representations are achievable by comparing these with the associated expected probabilities 
p(c) that would occur if all the words were distributed randomly in the corpus.  That leads naturally to 
using the Pointwise Mutual Information (PMI) I(c;t) = log(p(c|t)/p(c)).  Context words c are only used if 
they have a non-zero count in the corpus and hence non-zero probability p(c).  If, for a particular target 
word, a context word occurs more frequently than would be expected by chance, the corresponding PMI 
will be positive, and if it occurs less frequently, the PMI will be negative.  A practical problem with this is 
that for low frequency context and/or target words, the observed p(c|t) in the corpus becomes statistically 
unreliable, and often becomes zero leading to a negative infinite PMI, which is problematic for most 
distance measures (Manning & Schütze, 1999).  There are data smoothing or low-frequency cut-off 
approaches that can be used to deal with this problem, or one can use the simple ratios R(c;t) = p(c|t)/p(c) 
instead, for which small values have little effect on the distance measures, rather than lead to large 
unreliable negative components with a big effect on the distances.  However, the study of Bullinaria & 
Levy (2007) showed that setting all the negative PMI values to zero, to give vectors of Positive Pointwise 
Mutual Information (PPMI), reliably gave the best performing semantic representations across all the 
semantic tasks considered, as long as very small context windows and the standard cosine distance 
measure were used.  

It is not practical to repeat all the experiments of the Bullinaria & Levy (2007) study here, along with 
the three additional factors, so exactly the same best performing PPMI Cosine approach will be used for 
all the investigations in this paper.  However, here we shall use the ukWaC corpus (Baroni et al., 2009), 
which is more than 20 times the size of the British National Corpus (BNC; Aston & Burnard, 1998) used 
in the earlier study.  The ukWaC was built by web-crawling the UK internet domain and might therefore 
be slightly lower in quality than the BNC, but its much larger size more than compensates for that to 
result in more reliable statistics and associated better performance (Bullinaria & Levy, 2007; Bullinaria, 
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2008).  To remain consistent with the earlier study, the raw ukWaC corpus was first preprocessed to give 
a plain stream of about two billion untagged words, containing no punctuation marks apart from 
apostrophes.  Then the list of distinct words contained in it was frequency ordered and truncated at 
100,000 words (at which point the word frequency had dropped to 222 occurrences in the whole corpus) 
to give an ordered set of potential context words.  Setting a maximum of 100,000 context words is 
justified by the earlier empirical finding that the performance peaks or levels off at many fewer context 
words (Bullinaria, 2008), which is confirmed later for all the semantic tasks studied in this paper, and it 
has the important advantage of reducing the subsequent computational costs to feasible levels.  

Semantic Tasks 

It is clearly important that the semantic vectors be tested across a representative set of tasks, so we used 
the three semantic tests from the Bullinaria & Levy (2007) study, plus a new one that is proving to be 
relevant for more recent work using corpus based semantic representations to model brain imaging data 
(Mitchell et al., 2008; Levy & Bullinaria, 2012): 

TOEFL:  This is the much studied Test Of English as a Foreign Language that was originally 
used by Landauer & Dumais (1997), but with a few of the words changed from American to 
British spelling.  It is comprised of 80 multiple-choice decisions as to which of four choice 
words has the closest meaning to a given target word (e.g., which of the following words is 
closest in meaning to the word “urgently”: “typically”, “conceivably”, “tentatively” or 
“desperately”?).  It was implemented by determining the cosine distance between each target 
word’s semantic vector and that of each of the four associated choice words, and computing 
the percentage of cases for which the correct word was closest.  

Distance Comparison:  This, like the TOEFL test, is based on multiple-choice similarity 
decisions, but rather than test fine distinctions between words that tend to occur rarely in the 
corpus, it is designed to test the large scale structure of the semantic space using words that 
are well distributed in the corpus (Bullinaria & Levy, 2007).  It involves 200 pairs of 
semantically related words (e.g., “king” and “queen”, “concept” and “thought”, “cut” and 
“slice”, “agile” and “nimble”, “build” and “construct”).  It was implemented by determining 
the cosine distance between each target word’s semantic vector and that of its related word  
and each of ten other randomly chosen control words from the 200 pairs, and computing the 
percentage of control words that are further from the target than its related word. 

Semantic Categorization:  This test explores the extent to which the semantic vector space can 
represent known semantic categories (Patel et al., 1997).  It uses ten words from each of 53 
semantic categories (e.g., cities, flowers, insects, vegetables, dances) based on standard 
human category norms (Battig & Montague, 1969).  It was implemented by computing the 
percentage of individual target word vectors that have smaller cosine distance to their own 
semantic category centre than one of the other category centres.  The category centres are 
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simply the means of the vectors corresponding to the words in each category (excluding the 
target word under consideration).  

Clustering Purity:  This test is also a form of semantic categorization, but the performance is 
measured in terms of the purity of clustering of the semantic vectors in relation to their 
semantic categories (Levy & Bullinaria, 2012).  The word set of Mitchell et al. (2008) was 
used, which consists of 60 nouns spread evenly across 12 categories (e.g., vehicles, tools, 
animals, clothing).  The clustering and purity computations were performed on the semantic 
vectors using the CLUTO Clustering Toolkit (Karypis, 2003), with the direct k-way 
clustering algorithm and default settings, and standard purity measure (Zhao & Karypis, 
2001).  

Between them, these four tasks cover many of the key aspects of lexical semantics, and are used without 
variation for all the experiments in the remainder of this paper.  

Performance Baseline 

For comparison purposes, we begin by establishing baseline performance levels on the four tasks using 
the ukWaC corpus, and determining whether the same general pattern of results emerges as found in the 
earlier study of Bullinaria & Levy (2007).  

Figure 1 shows how the performance on the four tasks varies with the context window size and type: 
with co-occurrence counts based on s context words to the left (L), counts based on s words to the right 
(R), total counts given by adding the left and right counts (L+R), and double length vectors comprised of 
the left and right counts kept separate (L&R), as in Bullinaria & Levy (2007).  This is not as 
straightforward as it sounds, because the results depend on the number of frequency-ordered context 
dimensions used, and in different ways depending on the task and window size.  Consequently, the 
performances plotted for each task here are the maxima of the smoothed performance versus dimension 
curves for each window size.  It will be seen from the forthcoming graphs of performance against 
dimensions that this gives more reliable results than simply extracting the actual maxima from across the 
full range of dimensions, or by choosing a particular number of dimensions.  This highlights the need to 
carry out a full systematic study of the parameter variations.  

The general pattern of results is reassuringly similar to that found with the previously studied BNC 
corpus (Bullinaria & Levy, 2007).  The performance again deteriorates with increased window size for all 
tasks, and the symmetric windows (L+R and L&R) tend to perform better than the asymmetric windows 
(L and R).  One observation, which was not clear in the earlier study, is that the L&R vectors perform 
here slightly better than the L+R vectors on two of the tasks, and equally well on the other two.  Both 
vector types were used for the tests in the remainder of this study, and overall there proved to be no 
consistent advantage of one over the other.  Results will only be presented for the more conventional L+R 
vectors, and the clear optimal window size of one.  

The enhanced performance levels expected from the much larger corpus have been observed, but it is 
still not clear exactly how the quality of the ukWaC compares with that of the previously studied BNC, or 
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whether the larger ukWaC has brought the performances up to ceiling levels for the approach under 
investigation.  To explore those issues, the performances on the four semantic tasks were determined for a 
range of corpus sizes achieved by splitting each corpus into N equally sized disjoint subsets (N = 1, 2, 4, 8 
for the BNC, N = 1, 2, 3, 6, 12, 24 for the ukWaC).  Figure 2 shows the performance means over each set 
of N sub-corpora with standard error bars.  For each semantic task, the hand-crafted BNC not surprisingly 
out-performs equivalent sized subsets of the web-crawled ukWaC, but for larger corpus sizes the ukWaC 
does eventually perform better than the full BNC on each task.  There is still no clear sign of having 
reached performance ceilings with the full ukWaC, but the rate of improvement with corpus size is clearly 
diminishing, even on a log scale. 

Function Word Stop-lists 

Function words are frequently considered un-informative for computations related to lexical semantics 
because they serve to define the syntactic role of a content word rather than to enable semantic 
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Figure 1:  Best smoothed performance on the four semantic tasks as a function of window size and each of 
the four window types (L, R, L+R, L&R) for PPMI vectors with up to 100,000 context components.  
 



 
 

7 

distinctions to be made between content words.  The most frequent words in a language tend to be 
function words and so discarding them greatly reduces the size of a corpus and the complexity of 
computing its statistical properties.  Consequently, they are often not used when generating semantic 
vectors based on corpus statistics (e.g., Rapp, 2003), either with the belief that this allows a reduction in 
model size and computational effort without a significant drop in performance, or that it can actually 
improve performance.  Some past studies have already indicated that removing them does not affect 
performance for the type of tasks and vectors studied here (Levy & Bullinaria, 2001), but a more 
exhaustive exploration is still warranted because their removal could easily result in the loss of enough 
noise/information to lead to increased/decreased performance.  There are two distinct ways such a stop-
list could be applied: removing those words from the whole corpus before collecting the co-occurrence 
counts, or just deleting the corresponding components from the standard corpus vectors.  To a first 
approximation, removing them from the corpus will be roughly equivalent to using a larger window on 
the whole corpus and just ignoring the associated corpus vector components.  However, it is not obvious 
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Figure 2:  Mean performance with standard-error bars on the four semantic tasks as a function of corpus 
size, using disjoint subsets of the BNC and ukWaC corpora, with L+R context window of size 1.  
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how the difference will affect performance, so both were implemented.  
The results of both approaches, using the same stop-list of 201 function words, are shown as a 

function of the number of frequency ordered context dimensions in Figure 3.  They are compared with the 
baseline results obtained without a stop-list, and with those obtained by simply removing the 201 highest 
frequency components (which have a large overlap with the stop-list).  The results from the four 
approaches do vary, particularly for the noisier TOEFL and Purity tasks, but overall there are no 
significant differences in performance between them.  This provides confirmation of the earlier 
indications (Levy & Bullinaria, 2001) that removing function words does not improve the performance, at 
least not for the optimized vectors studied here, though it can halve the size of the corpus and thus speed 
up the computations.  The graphs also confirm, for all four tasks, the earlier indications (Bullinaria, 2008) 
that there are not likely to be any further performance improvements to be gained by going beyond a few 
tens of thousands of context dimensions.  
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Figure 3:  Performance on the four semantic tasks as a function of the number of context dimensions for 
the four cases (standard PPMI, first 201 components removed, stop-list of 201 components removed, stop-
list removed from corpus) with L+R context window of size 1.  
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Word Stemming and Lemmatization 

Lemmatization is another corpus pre-processing step that could prove beneficial when generating 
semantic vectors based on word co-occurrence statistics, because it can be argued that counting all the 
inflected forms of a word as instances of a root word or lemma better reflects the underlying semantic 
reasons why two word forms co-occur and increases the statistical reliability of the measured co-
occurrence vectors.  Moreover, it appears to have previously been applied successfully with formulations 
of corpus based semantic vectors not far removed from those studied in this paper (e.g., Rapp, 2003).  
However, it is not obvious how lemmatization will affect the quality of the resulting semantic vectors 
here, so that will now be investigated.  

One immediate problem is that lemmatization is actually quite difficult to perform accurately for 
very large untagged corpora, so often a simple stemming algorithm is applied instead to remove all the 
most common morphological and inflectional word endings from the corpus.  Stemming also has the 
advantage that it can easily be applied to existing co-occurrence counts in a way that lemmatization 
cannot.  Here, a simple stemming algorithm (Porter, 1980) was applied to the standard ukWaC corpus to 
give a stemmed ukWaC corpus, and that was compared with both the standard and lemmatized versions 
of the ukWaC corpus (Baroni et al., 2009).  Equivalent stemming and lemmatization of the test word sets 
is obviously also required.  The stemming algorithm can be applied to the test sets in exactly the same 
way as the corpus.  Lemmatization is more difficult because it often depends on the “word context” and 
for a test-set word that has to be determined from the test set it appears in, rather than the phrase it 
appears in.  For example, the target and four choice words in a TOEFL test question clearly need to be 
lemmatized in an equivalent manner for the test to still make sense.  Changes of such word groups from 
plural to singular, or from past tense to present, can be applied easily.  Dealing with word groups that 
include paired words like “easygoing” and “relaxed” requires a little more thought, but is not an 
insurmountable problem.   

The performance achieved on the four semantic tasks by the vectors derived from the stemmed and 
lemmatized corpora follow patterns of dependence on window type and size similar to those shown in 
Figure 1 for the standard vectors, with minimal window sizes still the best.  The results on the four tasks 
for the standard, stemmed, and lemmatized versions with symmetric L+R windows of size 1 are 
compared in Figure 4.  Overall, neither stemming nor lemmatization provides a significant performance 
advantage, though lemmatization does appear to offer a slight advantage for the Distance and Semantic 
Categorization tasks.  The most noticeable difference occurs for the TOEFL task, where stemming and 
lemmatization both introduce a clear performance peak around 4000 dimensions and a significant drop in 
performance for more dimensions.  The cause of that is not obvious, but similar peaks were observed in 
the results for the un-stemmed BNC (Bullinaria & Levy, 2007) and attributed to the trade-off between 
extra information and extra noise being introduced with the additional dimensions.  In conclusion, simple 
stemming offers no benefit, and the increases in performance provided by lemmatization are modest and 
perhaps only worthwhile if every last percentage of performance is required and a lemmatized corpus is 
already available.  
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Singular Value Decomposition  

It has been found in previous studies that reducing the dimensionality of corpus derived semantic vectors 
using Principal Components Analysis (PCA) or Singular Valued Decomposition (SVD) can improve their 
performance (e.g., Landauer & Dumais, 1997; Rapp, 2003).  The idea is that removing all but the initial 
principal components performs a kind of data smoothing that renders the remaining components better 
representations of semantics.  In the well known case of LSA (Landauer & Dumais, 1997), the 
performance of the raw vectors, equivalent to using all the principal components, is very poor, and using 
just the initial few hundred does provide massive improvements.  Since the co-occurrence matrix for LSA 
contains measurements of word-document co-occurrence where the columns are unordered “bags of 
words” from a document or paragraph, it is not surprising that these statistics are not ideal for 
characterizing the usage patterns of words in terms of which other particular words they co-occur with.  
The imprecision of measurement for this purpose appears to be mitigated by using only the optimal 
dimensions of the matrix while retaining the ability to make use of the document terms.  However, there 
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Figure 4: Performance on the four semantic tasks as a function of number of context dimensions for the 

standard, stemmed and lemmatized corpora with L+R context window of size 1. 
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appears to be no robust theoretical underpinning to this approach, and the optimal dimensionality appears 
to have to be determined empirically for each new application domain (Landauer & Dumais, 2008).  
Moreover, raw vectors of the type used in the present study have previously been shown to perform much 
better for our purposes than the LSA vectors after SVD based dimensional reduction (Bullinaria & Levy, 
2007), so it is not obvious whether SVD will be able to provide any further improvements in this context.  
Nevertheless, it is certainly worth exploring whether SVD can help here.  

The first question is which matrix should the SVD be performed on.  Since the lowest frequency 
target and context components will tend to be the noisiest, and the performances in Figures 3 and 4 are 
seen to level-off or even fall after about 10,000 frequency-ordered dimensions, it is not obvious that using 
the biggest matrix possible will give the best results.  Moreover, the semantic vectors here are nowhere 
near as sparse as those from standard LSA, and many more Singular Values tend to be required, so the 
standard sparse SVD algorithms do not provide the usual speed and memory advantages.  This means that 
performing SVD on very large matrices is extremely computationally intensive, and using the full set of 
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Figure 5:  Performance using the standard corpus on the four semantic tasks as a function of vector 

dimensionality for the standard frequency ordered PPMI vectors (Standard) and the Principal Component 

vectors with three different starting matrix sizes (PCs 50k, PCs 25k, PCs 12k). 
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100,000 words studied so far was not really feasible.  Fortunately, the graphs in Figures 3 and 4 indicate 
that halving the number of context dimensions does not result in a significant deterioration in 
performance, so the frequency ordered list of context words was further truncated at 50,509 words, the 
point at which the word frequency dropped to below 800 occurrences in the whole corpus.  Then, to check 
how that might be affecting the performance, the results were compared with those obtained after a 
further halving and quartering of the number of frequency-ordered dimensions used.  

The standard sparse SVD function in MATLAB was therefore first used to decompose the matrix M 
of 50,509 component vectors for each of 50,548 target words.  The number of target words here is slightly 
larger than the number of context components in order to include several test words that occur fewer than 
800 times in the corpus.  The SVD allowed the original matrix to be written in the form M = USVT, where 
U and V are orthogonal matrices, and S is a diagonal matrix containing the singular values in decreasing 
order.  Then, setting the smallest singular values to zero reduces the dimensionality with minimal loss of 
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Figure 6: Performance using the standard corpus on the four semantic tasks as a function of vector 

dimensionality for the standard frequency ordered PPMI vectors (Standard), Principal Component vectors 

(PCs 1+), Principal Component vectors with Caron P = 0.25 (P = 0.25), and Principal Component vectors 

with the first 100 components removed (PCs 101+).   
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information (defined using the standard Frobenius norm).  Moreover, since the cosine distances used to 
measure the degree of semantic overlap are invariant under orthogonal rotations, the matrix V can be used 
to perform a change of coordinate basis without affecting any of the performance results.  Thus the 
vectors X = MV = US can be truncated easily at any number of principal components and used as semantic 
vectors in exactly the same way as the original vectors.  Then, for comparison, the same process was 
repeated with the matrix dimensions of M halved and quartered as noted above.  For convenience later, 
the three starting matrix M sizes will simply be labeled 50k, 25k and 12k.  

The performances of the Principal Component (PC) vectors X on the four semantic tasks, as a 
function of the number of dimensions used (i.e., SVD approximation rank) are shown in Figure 5.  The 
results for the baseline raw frequency ordered PPMI vectors (Standard) are, of course, the same as in 
Figures 3 and 4.  The three sets of singular value ordered principal components corresponding to the 
various starting matrix sizes (PCs 50k, PCs 25k, PCs 12k) follow a similar pattern in each case, with the 
concentration of the variance into the initial PCs resulting in improved performances for smaller numbers 
of dimensions over the standard cases.  The PC performances appear to peak at several thousand 
dimensions and offer slight improvements over the standard vectors, but there is no sign of the large peak 
in performance at several hundred dimensions found with standard LSA (e.g., Landauer & Dumais, 
1997).  For the Distance and Semantic Categorization tasks, there appears to be a slight advantage to 
starting with the larger matrices, but, if anything, the reverse appears to be true for the noisier TOEFL and 
Purity tasks.   

Caron (2001) has carried out a more general investigation into the effect of SVD on LSA results.  He 
found that not only did the number of used dimensions affect the results, but that improved results could 
be obtained by adjusting the relative strengths/scale of the vector components.  The idea is that vectors X 
= USP are used, where the “weighting exponent” P determines how the components are weighted relative 
to the standard P = 1 case corresponding to simple SVD.  Clearly, since S is diagonal, the columns of X 
are still orthogonal.  Then, P > 1 gives more emphasis to the initial components of X (corresponding to 
large SVs), and P < 1 gives more emphasis to the later components (corresponding to small SVs).  This 
idea can easily be applied to the approach of this paper, and Figure 6 shows the performance on the four 
semantic tasks for P = 0.25 (P = 0.25), compared with the standard P = 1 (PCs 1+) and the raw PPMI 
vectors (Standard), each starting with the 50k matrix.  It is clear that the smaller value of P does result in 
improved performance for all four tasks.  

An alternative and more straightforward way to reduce the contribution of the initial PCs would be to 
simply remove them altogether.  The fourth line in the graphs of Figure 6 (PCs 101+) shows what 
happens when the first 100 principal components are removed, that is, the D dimensions used are the PC 
vector components 101 to 100+D.  The performance is again improved for all four tasks, to a level similar 
to that obtained by the Caron (2001) approach.  The implication is that the highest variance components 
tend to be contaminated most by aspects other than lexical semantics, and that, consequently, if those 
contributions are reduced or deleted, the vectors that remain are better representations of semantics.  

One natural conjecture would be that it is the function word dimensions that account for the variance 
that proves beneficial to exclude.  However, a remarkably similar pattern of results is found for the 
principal components obtained using the corpus that has had all those words removed in the manner 
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described above.  That also provides evidence of the robustness of the effect with respect to the size and 
content of the corpus used.  

The optimal value of P for the Caron (2001) approach or the optimal number of initial PC 
dimensions to remove, and the optimal number of used dimensions, are found to depend on the task and 
corpus involved.  That will obviously make it more difficult to identify good general purpose methods 
here, but Caron (2001) found even more pronounced task and data-set dependencies in his LSA based 
study, so this aspect is not actually as bad as might have been anticipated.  Figure 7 shows a typical 
pattern for the 50k initial matrix and 5000 used dimensions.  For the Caron approach (left graph), there is 
a clear improvement as P is reduced from the standard SVD value of 1, with a peak at or near P = 0.25 for 
all four tasks.  For the initial PC removal case (right graph), there is a clear improvement in performance 
for all four tasks as the initial components are excluded, but the extent and smoothness of the 
improvements, and the positions of the optima, are rather variable.  

Statistical Significance and Model Selection  

It is clear from the preceding graphs that there exists a significant degree of noise in the semantic task 
performances.  The measured word co-occurrence probabilities certainly depend on the corpus used, 
particularly for low frequency target and context words.  Also, many word forms have multiple meanings 
(e.g., “bank” as in river and as in money, or “saw” as in tool and as in seeing), and these will lead to 
combined vectors that are likely to be far away from the positions in the semantic space of the individual 
meanings.  That will result in large semantic distances to words that match one particular meaning, and 
poor performance on the kinds of semantic tasks studied in this paper.  Even if such words were carefully 
avoided when designing the test tasks (which they were not), they would still appear as context words 
leading to particularly unreliable vector components.  For the tasks based on many distance comparisons 
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Figure 7:  Performance using the standard corpus on the four semantic tasks as a function of the Caron P 
value (left) and the number of initial PCs excluded (right), using 5000 PCs from the standard corpus 50k 
matrix.  
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(such as the Distance and Semantic Categorization tasks here), the noise tends to average out and lead to 
fairly consistent results, but it is very evident for the tasks (such as TOEFL and Clustering Purity) based 
on fewer comparisons.  

French & Labiouse (2002) have discussed the fundamental problems underlying the derivation of 
semantic representations from large corpora, but there is considerable empirical evidence now that the 
corpus approach can result in remarkably good semantic representations, and useful general methods can 
emerge if the performance results are analyzed carefully.  The study of Bullinaria & Levy (2007) has 
already looked at how the performance variability depends on the word frequencies and corpus size, and 
found that larger corpus sizes (and hence higher frequencies) were crucial for obtaining the best 
performance.  Moreover, Figure 2 has shown that, even with the much larger ukWaC, there is still no sign 
of reaching ceiling performance levels with respect to corpus size.  This is unfortunate given that the best 
way to analyze the results involves testing on many independent corpora, computing means and standard 
errors, and using statistical tests to determine the significance of the differences.  The problem is that 
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Figure 8:  Mean performance with standard-error bars from 12 subsets of the standard corpus on the four 

semantic tasks as a function of the Caron P value for three different starting matrix sizes (50k, 25k, 12k) 

each with the optimized number of used dimensions shown (600, 700, 800, etc.).  
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splitting the available corpus into many sub-corpora for such analysis leads to a significant reduction in 
performance (as seen in Figure 2), and there is a natural reluctance to do that.  A reasonable compromise 
is to present the results from the full-size corpus as above, but repeat the key experiments using a series of 
distinct sub-corpora to get an idea of statistical variability and significance.  

The full ukWaC corpus used above was therefore split into 12 disjoint subsets of approximately 165 
million words each, the experimental results above re-computed as means over the 12 sub-corpora with 
standard-error bars, and the significances of differences determined using t tests.  No significant 
differences were found to result from the stop-listing or stemming, but there were highly significant 
improvements obtained by performing SVD.  Figure 8 shows the mean performances on the four 
semantic tasks as a function of the Caron P value for the three starting matrix sizes with the optimal 
number of used dimensions in each case.  The positions of the peaks are more variable here than in the 
full corpus case shown in Figure 7, but in each case there is a statistically significant improvement over 
the standard corpus vectors (paired two-tailed t tests t(11) > 5.92, p < 0.0001 for all tasks), and the 
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Figure 9:  Mean performance with standard-error bars from 12 subsets of the standard corpus on the four 

semantic tasks as a function of the number of Excluded Dimensions for three different starting matrix 

sizes (50k, 25k, 12k) each with the optimized number of used dimensions shown (1000, 1200, 1400, etc.).  
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optimal P value is no more than 0.6 for any task.  Figure 9 shows the equivalent performances for 
standard SVD (Caron P = 1) as a function of the number of excluded initial PC dimensions.  Again the 
positions of the peaks are rather variable, but in each case there is a statistically significant improvement 
over the standard corpus vectors (paired two-tailed t test t(11) > 5.92, p < 0.0001 for all tasks), and the 
optimal number of excluded dimensions is at least 20 for all tasks.   

The performances obtained from the smallest starting matrix (12k) are significantly worse than those 
from the larger starting matrices (25k, 50k), but overall there is no significant difference between the 
performances from the two larger starting matrices.  The lack of improvement from starting with matrices 
larger than 25k is consistent with the expectation that using more dimensions does not help, because of 
the statistical unreliability of the measured co-occurrence probabilities for the lowest frequency words.  
The differences between the peak performances from the Caron and Excluded Dimensions approaches are 
not significant for any of the four semantic tasks (paired two-tailed t test t(11) < 2.20, p > 0.05 in each 
case).  It may be that the optimal parameter values become more consistent across the different semantic 
tasks as the corpus becomes larger and more representative, but much larger corpora than currently 
available will be needed to test that.  

The TOEFL task was designed to be hard (even for humans), and involves a number of rather low 
frequency words, so it is not surprising to see a large variance in its performance levels.  However, it is 
not so easy to understand why, in Figures 5 to 9, the TOEFL task behaves so differently from the other 
semantic tasks (even the closely related distance comparison task), with both the Caron (2001) approach 
and the exclusion of the initial PCs leading to relatively large levels of improvement in performance, and 
the best performance levels occurring at a much larger number of excluded dimensions.  If the TOEFL 
task is used as just one of many test tasks, these differences should not be a problem, but it has actually 
become a standard measure of performance for corpus derived semantic representations (e.g., Landauer & 
Dumais, 1997; Turney, 2001, 2008; Levy & Bullinaria, 2001; Terra & Clarke, 2003; Rapp, 2003; 
Matveeva et al., 2005; Bullinaria & Levy, 2007; Pado & Lapata, 2007), despite the level of noise in its 
results and atypical behaviour with respect to the parameters.  It is clear that one should be wary of 
relying on a single task to optimize methods for use on other tasks.  

In Figure 6 it can be seen that for Caron P = 0.25 and 5000 used dimensions, the TOEFL 
performance actually reaches 100%.  It also reaches 100% for 660 excluded dimensions and 4000 used 
dimensions.  Of course, it would be misleading to regard either of those 100% results to be the final 
performance of this approach, and to take the associated parameter values to be the best for use more 
generally, since that would clearly violate accepted practices for valid model selection (e.g., Burnham & 
Anderson, 2010).  In fact, although the parameters corresponding to the 100% TOEFL result using the 
Caron approach also work well for the other semantic tasks, the parameters corresponding to the 100% 
using excluded dimensions are far from optimal for the other semantic tasks.  It is equally problematic to 
trust any headline results that are presented without details of how they relate to the results obtained using 
slightly different parameter values, or without some indication of how much variance there is in the 
results and how many variations were tried (e.g., Rapp, 2003).  A systematic and principled approach is 
needed to arrive at good general purpose semantic representations, one that can identify the best model 
despite the noise involved.  
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Sound model selection procedures with estimates of the reliability of the results can be quite 
complicated (e.g., Burnham & Anderson, 2010), but one simple approach that can be applied in situations 
such as the one here is, instead of just picking the maximum performance on the given data from all the 
variations tested, to use an independent “validation task” to optimize the parameters.  The obvious way to 
do that would be to use the same task with a distinct set of test words, but creating appropriate validation 
word sets is not easy when all the most suitable words for the given task have already been used for the 
original test set.  In this study, a convenient alternative formulation would be to use the performance on 
the three other semantic tasks to determine appropriate parameter values (i.e., window type and size, 
Caron P value, number of excluded PC dimensions, etc.) for the TOEFL task.  Fortunately, for the full 
ukWaC, all the semantic tasks here point to the same best values for all the parameters except those 
relating to the SVD variations – the Caron P value or the number of excluded dimensions, and the number 
of used PC dimensions.  To fix those values, taking the overall performance peak across the three non-
TOEFL tasks in the data leading to Figure 7 suggests that a Caron P value of 0.25 and 5000 used 
dimensions is the most consistent way of getting good performance.  That gives the TOEFL performance 
of 100% on the standard corpus, and 97.5% on the stopped corpus, averaging to 98.75%.  That far 
exceeds the 92.5% of Rapp (2003) which is the best result previously claimed for a corpus based semantic 
representation, and also beats the state-of-the-art 97.5% achieved by the hybrid system of Turney et al. 
(2003) which merges the choice probabilities from an ensemble of four different approaches.  

It is important to note, however, that Figures 8 and 9 suggest that using the other three tasks to set the 
parameters for the TOEFL task might not really be reliable, and the good performance here could just be 
a lucky accident.  It could also be argued that the various parameters should be optimized independently 
for each distinct task, and that implies using some kind of leave-one-out cross-validation approach, or 
some form of data smoothing, on the TOEFL task alone.  The details of exactly how that is done affect 
the results that emerge, but most reasonable approaches lead to around 97.5%, which still exceeds the 
previous best corpus based result (Rapp, 2003), and equals the existing overall state-of-the-art result for 
the TOEFL task (Turney et al., 2003).  It is possible that even better TOEFL results could be achieved by 
including these optimized semantic vectors in the ensemble approach of Turney et al. (2003), but the 
approach there only merges the sets of TOEFL outputs, and would not lead to an improved semantic 
representation that is the focus of this study.  

Clearly, similar model selection approaches can be used for the other tasks, with the chosen approach 
dictated by the intended use of the resultant vectors, for example, in some particular application, or for 
formulating a good general approach.  

Understanding the SVD Results 

Another factor that often aids model selection is having a theoretical understanding of how the various 
parameters affect the results.  In the past, when SVD has been used to reduce the dimensionality of corpus 
derived semantic vectors, all except the first few hundred Principal Components (PCs) or Singular Values 
(SVs) were removed to give improved results over the raw vectors (e.g., Landauer & Dumais, 1997; 
Rapp, 2003).  In contrast, the raw vectors here already produce good results and removing the later PCs 
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leads to relatively modest improvements, or no improvement at all.  Instead, significantly improved 
results are achieved here by reducing the contribution of the initial PCs (either with the Caron (2001) 
approach or by simply excluding them) and using several thousand components.  As discussed above, it is 
not straightforward to determine the best Caron P value or how many initial PCs should be excluded, and 
how many components should be used, but that might prove easier if we had a better understanding of 
what it is that the initial (high variance) and later (low variance) PCs actually correspond to.  

It is clear from Figure 6 that the first 100 PCs on their own perform reasonably well on all four 
semantic tasks, and yet a reduction in their contribution (including total removal) improves performance 
when larger numbers of components are used.  This implies that the components representing the most 
variance do contain useful semantic information, but they are not the components that best represent 
lexical semantics, though it is not obvious what (if anything) those initial PCs might better represent.  It 
has previously been established that exactly the same corpus derived representations also exhibit very 
good performance at syntactic categorization too (Bullinaria & Levy, 2007).  Indeed, some of the earliest 
work on vector representations based on co-occurrence statistics from large corpora was actually aimed at 
bootstrapping syntactic categories rather than semantics (Finch & Chater, 1992).  This suggests that the 
vectors must be some kind of combined representation of both semantics and syntax, and possibly other 
things too.  If much of the variance not corresponding to the aspects of semantics required for the chosen 
semantic tasks is found in the initial PCs, and the semantic information is spread over many more PCs, 
that would explain why removing the initial PCs improves the performance on the semantic tasks.  In 
effect, by removing or reducing the heavily weighted dimensions that have the largest “noise” component, 
the “signal” relevant to the tasks being studied becomes clearer.  

One way to explore the feasibility of that idea is to start off with vectors that perform perfectly on the 
TOEFL task, add random noise in N dimensions, and then test whether SVD is able to identify the 
dimensions corresponding to the noise and thus allow their removal.  This was done by starting with the 
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Figure 10:  Performance on the TOEFL task as a function of the Caron P value (left) and number of initial 
PCs excluded (right), starting from the best 5000 dimensional vectors from Figure 6 with varying degrees 
of added noise in 100 dimensions.  
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5000 dimensional Caron P = 0.25 vectors that gave the 100% TOEFL performance in Figure 6, and 
adding noise by generating a uniform distribution of random vector components in N dimensions and 
using a random orthogonal matrix to rotate them over the whole 5000 dimensional space.  Then SVD was 
performed as before using 5000 target words, and the TOEFL performance was plotted for a range of 
noise-to-signal ratios.  Figure 10 shows a typical set of results for 100 dimensional added noise using both 
the Caron approach (left) and the Excluded Dimensions approach (right).  Similar patterns of results were 
obtained by starting from perfectly performing vectors derived using the Excluded Dimensions approach.  
For the standard cases, with Caron P = 1 or zero excluded dimensions, the performance falls in line with 
the degree of added noise.  As the Caron P value is decreased below one, the contribution of all levels of 
added noise is reduced until almost perfect performance is recovered around P = 0, and below that the 
performance falls off as the low variance PCs become over emphasized.  A similar pattern is achieved by 
removing the initial PCs.  With no noise (0) the performance falls off slowly as more dimensions are 
excluded, indicating that some important semantic information is being lost, but not much.  A small 
amount of noise (0.25) results in a slight deterioration of performance, and removing the initial PCs does 
not offer much improvement.  A moderate amount of noise (1) results in a larger reduction in 
performance for no excluded dimensions, but the SVD is then able to pick out the noisy dimensions 
which allows the performance to be improved by removing them.  For increasingly large amounts of 
noise (2, 4, 8) there are proportionate reductions in the initial performance, but SVD is better able to 
identify the correct number of noisy dimensions to remove, and that leads to achieving performance levels 
similar to the no noise case with the same number of removed dimensions.  

It seems quite plausible that similar processes are happening for the real vectors.  Of course, what is 
noise for one task could well be the signal for another, and a uniform distribution of random components 
in a particular number of dimensions is unlikely to be a very realistic representation of the “non-
semantics” here.  Nevertheless, the results in Figure 10 for modest noise-to-signal ratios (0.25 to 1) do 
follow a remarkably similar pattern to the real results seen in Figures 7 to 9.  Unfortunately, with both the 
signal (semantics) and noise (non-semantics) here spread over large and unknown numbers of 
dimensions, it is proving difficult to establish exactly what the removed “high noise” dimensions actually 
correspond to.  

One possibility is that it really is just real noise in the corpus (rather than some non-semantic signal) 
and that a cleaner corpus, such as the BNC (Aston & Burnard, 1998), would not exhibit such pronounced 
improvements.  However, repeating the above experiments using the BNC shows that both the Caron and 
Excluded Dimensions approaches do lead to significantly improved performances there too.  For the 
TOEFL task, the improvements are not as pronounced as with the ukWaC corpus: the raw BNC vectors 
achieve 83.75%, the Caron approach with P = 0.2 achieves 88.75%, and standard SVD with 50 excluded 
dimensions achieves 90.00%.  For the other tasks, however, the improvements are in line with those from 
the ukWaC corpus, such as from 78.87% to 83.96% and 83.39% for the semantic categorization task.  So 
there definitely appears to be more to this than simply compensating for a noisy corpus. 

Apart from real random factors, some aspect of syntax is another likely candidate, but it is not clear 
what would be the best way to investigate this further.  A range of experiments using variations of the 
syntactic clustering task of Bullinaria & Levy (2007) have so far led to inconclusive results about what 
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syntactic information particular sub-sets of PCs represent best.  
Another investigative avenue involves an analysis of the matrices resulting from the SVD.  The V 

matrix maps the PC dimensions back to the original word co-occurrence statistics space, so one can look 
at the components of V to see which context dimensions (i.e., which words in the corpus) the first, second, 
etc. PCs mainly map to.  That will only provide a rough idea of what is happening, but it will at least give 
an indication of what the high variance dimensions (which do not contribute the most useful information 
about semantics) actually correspond to.  The context words contributing most to the first PC are actually 
“ed”, “thomas”, “james”, “dr”, “john” and “mr”.  By studying the SVD of the L&R vectors discussed 
above, it is possible to separate the contributions from the left and right context words and see that the left 
context words contributing most are “mr”, “dr”, “mrs”, “john”, “david”, “william”, “james” and 
“richard”, and the right context words contributing most are “et”, “’s”, “writes”, “wrote”, “whose” and 
“ed”.  These, not surprisingly, can be shown to correspond to the context components exhibiting the most 
variance in the original vectors.  It appears, therefore, that the main contributors to the variance relate to 
people’s names, and these are unlikely to provide the most useful information for the lexical semantics 
tasks being studied here, so it makes good sense that removing them or reducing their contribution can 
improve performance.  The subsequent PCs have less easily interpretable primary contributors, and 
different corpora are found to have different contributors to the highest variance PCs.  For example, for 
the BNC, the words that contribute most to the first principal component are “and” and “or”, but most of 
the highest contributing words for the ukWaC are not far behind them.  The general pattern appears to be 
that the highest variance dimensions tend not to contribute the most useful information about semantics, 
and have a large “noise” component that is best removed or reduced, but it is clear that much more work 
will be required to fully understand their contribution.  

Conclusions and Discussion 

This paper has extended the Bullinaria & Levy (2007) study of the best computational methods for 
extracting semantic representations from simple word co-occurrence statistics in large text corpora.  It did 
this by exploring the effects of three additional factors that have apparently proved effective elsewhere, 
namely the use of function word stop-lists, word stemming, and dimensionality reduction using Singular 
Value Decomposition (SVD).  It also used a much larger corpus, which rendered the computed semantic 
vector components more statistically reliable, and allowed the variance of the results to be determined 
across a number of distinct sub-corpora that were still large enough to produce reasonably good results.  

The first findings were that neither the application of function word stop-lists nor word stemming has 
a significant effect on the semantic vector performances over a set of four representative semantic tasks.  
This, together with confirmation that minimal context window sizes (of just one word each side of the 
target word) give the best results, means that the best performing semantic vectors are actually very easy 
to compute.  The fact that the application of function word stop-lists can reduce the size of the corpus by 
half, without compromising the results, means that the computations involved can potentially be halved.  
In the past that has been important, but computing simple word counts is no longer particularly onerous 
with current computer technology.  
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A more important finding was that performing dimensionality reduction using SVD can result in 
significant improvements in performance across all four of the semantic tasks studied, though not in the 
usual manner.  Whereas previous studies using SVD to enhance representations of lexical semantics (e.g., 
Landauer & Dumais, 1997; Rapp, 2003) have optimized performance by removing all but the first few 
hundred principal components, here the best performances were obtained by reducing the contributions of 
the initial components while simultaneously optimizing the number of used dimensions.  Two approaches 
were investigated: First, the Caron (2001) approach whereby the standard principal components are scaled 
by negative powers of their singular values, so that the relative contributions of the initial principal 
components are reduced.  Then a more straightforward approach whereby the initial principal component 
dimensions are simply excluded.  Both approaches were shown to lead to statistically significant 
performance improvements of a similar degree, for each of the four semantic tasks, and a new state-of-
the-art performance on the standard TOEFL task (Landauer & Dumais, 1997) was achieved.   

The implication is that the highest variance dimensions must be contaminated by factors that are 
unhelpful to the aspects of lexical semantics relevant to the semantic tasks studied, and hence their 
reduction or removal acts to improve the semantic representation by reducing the relative contribution of 
noise or irrelevant information.  A preliminary investigation into the nature of those components was 
reported in this paper, but, in many ways, it may not be important what exactly the removed contributions 
correspond to, as long as robust methods exist to determine empirically the optimal way to reduce the 
effect of the deleterious dimensions for each particular application.  It is fortuitous, given that the 
computational resources required to compute large numbers of Singular Values (SVs) for large matrices 
could easily limit the optimal performance enhancing use of SVD, that both the Caron and Excluded 
Dimensions approaches have relatively low optimal numbers of SVs for all the semantic tasks studied, 
rendering the optimal methods computationally feasible.  

An important issue arising from the explorations of the three new factors was that of reliable model 
selection.  It is fortunate that a general method (based on vectors of Positive Pointwise Mutual 
Information with minimal context window size and cosine distance metric) has emerged that proves to be 
best for all the lexical semantic tasks and corpora studied, but the parameters relating to the enhanced 
SVD approaches do appear to need to be optimized specifically for each particular task and corpus in 
order to achieve the best possible performance levels.  Moreover, the performance results depend rather 
noisily on those parameter values (e.g., the numbers of excluded and used dimensions).  Simply trawling 
through enormous numbers of variations and parameter values in search of the best result can lead to 
impressive results on the benchmark tasks (e.g., 100% on the TOEFL test), but that is unlikely to lead to 
useful methods that generalize well to new tasks or new corpora.  The statistical significance of the key 
results in this paper were established by splitting the full corpus into twelve disjoint sub-sets and 
performing t tests, and that also led to more reliable optimal parameter values for each task.  However, the 
need to use considerably smaller sub-corpora for such analyses is known to result in inferior performance 
levels (e.g., Figure 2 and Bullinaria & Levy, 2007), so it is natural that the best results in this field are 
often presented for the largest corpus available without proper statistical testing and model selection.  
Nevertheless, the use of validation tasks to set parameters, and data smoothing techniques when 
presenting results, are things that should certainly become standard for the field.  A clear understanding of 
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the optimal methods and parameter values may also be important for the development of psychological 
theory where factors such as realistic degrees of exposure to language input and capacity of short-term 
memory need to be taken into account.  

There remains scope for further work in this area.  Testing the approaches discussed in this paper on 
even larger and cleaner corpora, and on a more comprehensive range of semantic tasks, will now be 
straightforward as soon as such resources become available.  Then, although it has already been shown in 
this paper how the general method arrived at by Bullinaria & Levy (2007) can be improved by similar 
amounts by two variations of the standard SVD approach, it remains possible that other adjustments to the 
principal components could work even better.  Moreover, a better understanding of what exactly is being 
removed by the Caron (2001) and Excluded Dimensions approaches could lead to more direct methods 
for refining the semantic representations without the need for time consuming SVD.  It is hoped that the 
promising results presented in this paper will prompt others to join in further exploration of these matters. 
To facilitate that, an ever increasing set of our corpus derived semantic vectors are available from the 
web-page http://www.cs.bham.ac.uk/~jxb/corpus.html.   
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