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Abstract:  Many speech technology applications rely upon having a good mapping

between representations of text and phonemes that generalizes well to novel inputs,

and that in turn relies upon having a good underlying alignment of the text and

phonemes.  For large scale systems, any approaches other than machine learning will

be impractical, so that is the approach normally adopted.  The current state-of-the-art

appears to be a symbolic rule-based learning approach, which seems surprising given

the range of neural network systems for text to phoneme mapping that have been

developed over the years.  This paper reviews the neural network based approaches to

this problem and identifies the key problems involved.  It then goes on to solve those

problems and demonstrate how it is possible for neural networks to simultaneously

perform text to phoneme alignment and mapping with performance levels at least as

good as the best existing systems.
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1   Introduction

There are many speech technology applications (such as speech recognition and production) that require a

mapping between text and phonemes that not only performs well on known words, but can also generalize

appropriately to new words, such as previously unseen proper nouns [1].  Such mappings are generally

most effectively produced by automated systems that learn from an enormous number of representative

exemplars.  However, the first stage of that process typically requires the alignment of the text and

phonemes in the training data, so that an appropriate mapping can be learned, and that in itself remains a

difficult research problem [2, 3, 4].  For most successful symbolic rule-based systems [1, 5] and neural

network systems [6, 7, 8], that alignment is usually performed as a separate data pre-processing stage.

The current state-of-the-art for this alignment process is the rule-based Expectation-Maximization (EM)

algorithm of Damper et al. [9], and data aligned in that way has been used in the rule-based Pronunciation

by Analogy (PbA) system of Damper et al. [1, 9] to provide state-of-the-art large-scale text to phoneme

mappings for English [5].

It might seem surprising, given the large number of neural network based text-to-phoneme

conversion systems found in the literature, that neural network approaches are not more competitive in

this area.  The most likely reason is that the vast majority of the older neural network approaches [7, 8,

10, 11] were primarily aimed at modeling psychological data and understanding human language abilities,

rather than providing high performance applications for speech technology.  They consequently tended to

concentrate on modeling human-like performance on relatively small-scale empirically testable datasets,

rather than creating large-scale systems of the kind required for real world applications.  Another

important issue has been the computational resources required for training neural networks, which has

hampered progress in scaling them up to cope with larger words and larger training datasets.  However,

computers continue to grow more powerful, and a simple scalable neural network based approach for

dealing with both the alignment and mapping problems has actually existed in the psychological

modeling literature for some time [10, 11, 12, 13], so it seems timely to explore what can now be

achieved with a neural network approach to this problem.

The remainder of this paper begins by outlining the key issues involved in the alignment and

mapping processes, and reviews the existing neural network approaches to those tasks.  That leads to a

consideration of the problems faced when attempting to scale up simple psychological models to practical

large-scale systems.  Results from a series of computational experiments are then presented which

optimize the scaling-up processes and allow direct comparisons with the results obtained by the state-of-
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the-art symbolic approach of Damper et al. [9].  It is shown how the neural networks can not only learn a

better mapping than the symbolic approach, but are also able to perform high quality alignment as part of

the standard learning phase.  The paper ends with some conclusions and discussion.

2   The Neural Network Architecture

Aligning the text (i.e. letters/graphemes) and phonemes in the training data is a crucial first step for text-

to-phoneme conversion systems, irrespective of whether they are small scale psychological models of

reading, or larger scale practical speech technology applications.  The key issue is that some individual

letters (e.g., “X”) can sometimes correspond to more than one phoneme, and other strings of letters (e.g.,

“TH”) can correspond to only one phoneme, and consequently, given corresponding strings of letters and

phonemes, it is not always obvious which letters should map to which phonemes.

Various different approaches have previously been employed to deal with this alignment problem in

neural network models.  The first neural network text-to-phoneme system was the NETtalk model of

Sejnowski & Rosenberg [6], but that chose to simply bypass the whole problem by using pre-aligned

training data.  For psychological models of reading, pre-alignment was considered unacceptable, and that

led Seidenberg & McClelland [7] to develop models based on letter and phoneme trigrams known as

Wickelfeatures [14].  Those models were groundbreaking in that they allowed direct comparisons with

empirical human reading performance (such as stages of learning and reaction times), but ultimately they

had relatively poor performance levels, even on small numbers of mono-syllabic words.  The problem

was that Wickelfeature style approaches are unable to represent reliably the information required to

generate appropriate mappings for realistic languages [15].  The shortcomings of that type of model were

addressed by Plaut, McClelland, Seidenberg & Patterson [8] who went on to develop more accurate

models of human performance, but they had to return to pre-aligned training data to get good

performance.  That deficiency led Bullinaria to develop variations of the original NETtalk model that

were able to avoid the pre-alignment by learning appropriate alignments at the same time as learning the

mapping itself [10, 11, 13].

Those improved NETtalk models were based on a standard fully connected feed-forward neural

network architecture [16], with two layers of connection weights similar to the original model [6].  The

inputs consist of a sufficient number of blocks of Nletters binary input units to represent the longest words,

with each block containing one unit for each letter of the alphabet.  The outputs consist of one or more

blocks of Nphonemes output units, with each block containing one unit for each phoneme of the language.  In

between, there is one layer of Nhidden hidden units, which is sufficient to accommodate appropriate learned
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Figure 1.  The neural network architecture with one letter represented in each input block and one

phoneme represented in each output block.  The phonemes represented in the two output blocks P1 and P2

correspond to the target letter represented in the centre block T of the input window, in the context of the

letters represented in the blocks L1, L2, … to its left and R1, R2, … to its right.

hidden representations to facilitate the required input-to-output mappings.  Each input word is initially

positioned with its first letter in the middle input block, and then slides one letter at a time to the left, until

its last letter is in that block.  The network is trained so that, for each word in each position, the activated

output phonemes correspond to the letter represented by the central input block, in the context of the

letters surrounding it.  To deal with the possibility that some single letters need to map to more than a

single phoneme, the network usually requires more than one output block.  Finally, to deal with strings of

letters that map to shorter strings of phonemes, the output blocks allow the representation of a “null

phoneme” (or “blank output”) with equal status to the real phonemes.  It is clear that, with sufficiently

large networks of this type, words of any length can be accommodated, along with any number of one-to-

one or many-to-one mappings between letter strings and phoneme strings.  Obviously, one-to-many

mappings (e.g., homographs that are not homophones) cannot be successfully accommodated without

further context information, but supplementing the network with appropriate additional context inputs is

straightforward [11].  For standard English words, two blocks of output phonemes are sufficient, but this

will result in a few non-standard words and abbreviations (such as “XMAS”) having less than optimal

alignment.  Thus, the basic representational requirements have led  to the neural network architecture

shown in Figure 1.

To train the neural network on pre-aligned training data, it is straightforward to apply any standard

learning algorithm (such as traditional back-propagation, or any other gradient descent based connection

weight updating [16]) so that the correct output phonemes are produced for each input position of each

word.  Clearly, to learn appropriate alignments too, a more sophisticated learning algorithm will be

required.  The first issue is that, as explained in detail by Damper et al. [9], there is actually no unique
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correct alignment to be learned (e.g., the single phoneme corresponding to a “TH” could equally well be

aligned with the letter “T” as with the “H”).  However, some alignments will still be more appropriate

than others.  For example, consider the word “THIN”, which maps to the three phonemes “dh ih n” (using

the standard BEEP notation [17]).  If “_” is used to represent a blank (null phoneme), then “dh _ ih n” and

“_ dh ih n” would be considered equally acceptable alignments, but “dh ih n _” would not, because

mapping the letter “I” to the phoneme “n” would be highly irregular compared with mapping the letter

“N” to the phoneme “n”.  The crucial concept here is the idea of regularity: good alignments are highly

regular, and poor alignments lead to many irregularities.  It is the ability of neural networks to identify

and exploit regularities in data that underlies their ability to generalize well, so there is good reason to

expect them to be able to learn good alignments and have that lead to good mappings too.

It was this confidence in the ability of neural networks to identify regular alignments that led to the

adoption of multi-target training [10, 13].  The general idea underlying this is that each neural network

input pattern has not one, but a whole set of possible target output patterns, and the network is only

trained on the target that already exhibits the lowest output error (e.g., the lowest sum-squared difference

between the actual network outputs and the target outputs).  For the case of mapping text to phonemes,

the multiple targets are the complete set of possible text-to-phoneme alignments.  Then, even if the

network starts with random initial weights, the learning process tends to settle down to using the set of

targets that correspond to a good regular set of alignments.  The reason that happens is because, even if

the starting alignments are completely random, any coherent regular weight updates will tend to build up,

while the irregular incoherent weight updates will tend to cancel out, with the overall result that the

regular alignments will have their output errors reduced by more that the irregular alignments.  Then, with

each round (or epoch) of weight updates, even more of the potential targets with regular alignments will

have the lowest errors and be chosen as targets for learning (instead of those corresponding to irregular

alignments), and the good alignments will come to dominate the weight updates even more.  This process

continues until all the chosen targets end up corresponding to good regular alignments, the alignment

process is complete, and the same targets are chosen every time until all the output activation errors are

reduced to whatever termination criterion is specified.

This neural network architecture and learning algorithm formed the basis of a series of models of

reading aloud, including human-like generalization ability for reading non-words, accounts of frequency

and regularity effects in reaction times, and models of developmental and acquired surface dyslexia [10,

11]. It also proved robust enough that straightforward extensions of it could be used to model the even

harder reverse task of spelling, i.e. phoneme-to-text conversion [11, 12].  This naturally leads to the
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question of why this approach has not been applied to task of text-to-phoneme mapping more generally.

The most likely reason is that those earlier models were all rather small scale, and there are various

practical technical problems with scaling it up to cope with much larger datasets, such as the British

English Example Pronunciation (BEEP) dictionary [17] used in the Damper et al. [9] study.

3   Solving the Problems of Scaling-up

The main difficulties encountered when attempting to scale up the multi-target learning approach for the

text to phoneme mapping are: the enormous numbers of words in the larger training datasets, the

increased word lengths involved, and the combinatorial explosion that arises in the number of possible

target alignments for longer words.

The first problem is very common with large training datasets:  During each epoch of learning, the

neural network weight updates associated with the irregular mappings (e.g., the letters “LB” being

pronounced “p aw n d”) are very small compared with the combined updates associated with more regular

mappings, and that can render the irregular mappings extremely hard to learn.  This issue tends to have

been less of a problem for the earlier psychological models, because they have usually taken word usage

frequencies into account in the training process, either by using the training words, or scaling the weight

updates, in proportion to the word frequencies.  The reason this works is that language evolution has

resulted in irregular words generally being of higher frequency than regular words [18], which usually

provides sufficient compensation for all the words to be learned well [7, 8, 11].  A more general

alternative solution, that works even when word frequency information is not available (e.g., as with the

BEEP dictionary data), is to simply stop updating the weights for words that have already reached some

threshold output error level (e.g., that have each output unit activation within 0.2 of its binary target

value).  Since the latter approach is fairly standard practice, and proved to work very well for this

application, it was adopted as standard for all the networks discussed in this paper.

Another problem with the larger training datasets is that they tend to contain longer compound

words, and many of those will require the accommodation of very long range pronunciation

dependencies.  For example, two closely related words in the BEEP dictionary are

  RECONSIDERATIONS    ⇒      r iy k ax n s ih d ax r ey sh ax n z

PRECONSIDERATIONS    ⇒   p r iy k ax n s ih d ax r ey sh n z

in which the presence or absence of the initial “P” affects the pronunciation of the final “IONS”.  It is

debatable whether this is a real idiosyncrasy of English, or simply a problem with the BEEP dictionary
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which has its content drawn from many different sources and is known to contain errors [19].  However,

any system learning the mapping from this dataset will still have to deal with it, and to do that it will need

to have a large enough input context window to accommodate the “P” while the “IONS” is being

processed.  To cope with long range dependencies like this in the architecture of Figure 1, 20 context

letters each side of the crucial central position were required.  That results in an input window of 41

letters, and hence 1066 input units in total, which is a rather large neural network to train.  Computational

resource problems could easily arise with naïve implementations of the network that simply multiply all

the input activations by the corresponding weights.  In practice, it is possible at each stage to simply

ignore any input units that are not activated, because they do not contribute to any activations or weight

updates, and just add the weights for those that are.  This means, on average, adding only nine weights,

rather than adding 1066 weighted inputs, for each hidden unit.

An unfortunate consequence of having to make large amounts of context information available for

some words, is that it could easily be misused for other words.  The crucial concept of regularity here is

underpinned by the idea that the text-to-phoneme mapping consists of a whole hierarchy of rules

embodied in the neural network connection weights, and that the simpler and more general that rule set is,

the better it is likely to generalize.  Thus, good generalization depends on making the minimum use of the

available context information that is consistent with performing the mapping accurately on the training

data, which means only using long range context information when more local context proves

insufficient.  That could be problematic given that the standard gradient descent based neural network

learning automatically updates any weights connected to any useable input information.  One obvious

solution would be to have different learning rates for the weights connected to different blocks of inputs:

large for the central block, and increasingly smaller for more distant blocks.  Although that does work, it

proves extremely difficult in practice to have the rates fall off sufficiently fast with distance without a

considerable slow-down in the training time of the networks.  A simple alternative solution corresponds

to the standard practice of teaching children to read shorter words before they are exposed to longer

words.  This proves to work extremely well for training the neural networks.  At each stage, the network

waits till it has learned a certain fraction θ of the current word set before words of one letter longer are

added to the used part of the training data.  This incremental approach starts with learning words of length

one and proceeds till the network is trained to completion on the whole training dataset.  The final

generalization performance depends on the chosen criterion θ, so that is an aspect of the learning process

that needs to be optimized empirically.

A further problem resulting from having many long words in the training data, is that the
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combinatorics of the text to phoneme alignment results in an explosion in the number of targets for the

multi-target approach, and that becomes particularly troublesome for words of more than eight or nine

letters long.  The BEEP dictionary [17] contains around 200,000 words, with over 25% of them eleven or

more letters long, and some as long as 28 letters.  In practice, this means that the number of possible

alignments that can be considered during training will eventually have to be restricted, but, of course, that

needs to be done in such a way that a large proportion of the best alignments are still found.  Fortunately,

the incremental learning approach just discussed not only helps avoid the misuse of context information,

but also provides a workable solution for dealing with the combinatorial explosion of the target

alignments.  In particular, it allows the training data subsets of different maximum word lengths to be

easily dealt with in different ways.

The BEEP training data contains only 829 words of three or fewer letters, and these can easily be

aligned by hand.  The earlier small scale studies [10, 11, 13] showed that this was not actually necessary

for achieving good final alignments, but it will be carried out here because it serves to prevent some of the

arbitrariness in the resulting alignments, which simplifies the subsequent analysis and evaluation.  In

particular, the small hand-aligned words only have a non-blank in the right-hand phoneme block when

there is already one in the left-hand block, and when two letters map to a single phoneme, that phoneme is

always aligned with the left most letter.  When the networks progress to learning the later words sets that

also include longer words, all the words are unaligned, and the networks are free to change the hand-

crafted alignments they were forced to learn previously, but that will only happen when there is some

computational advantage to it.  Generally, the alignment convention built into the hand-alignments of the

initial short words leads to similar consistency in the alignments of the longer words too.

Once a word is pronounced correctly by the neural network, there is no need to look for a better

target alignment for it, because any other alignment will clearly result in a larger error.  This is actually

quite common because each time the network moves on to learning a new larger word-set, most of the

shorter words are already pronounced correctly, and many of the new words are also already correct

without the need for further training, because they are regular and the network automatically generalizes

well to them.  That massively reduces the number of target alignments that need processing, and means it

is computationally feasible to search through all the possible alignments for each incorrect word at each

stage of training for all words of fewer than 16 letters.

A full search through all the potential alignments does, however, become impractical for longer

words.  Fortunately, in practice for the BEEP training data, by the time 16 letter words are introduced into

the training, over 80% of the whole training set (that is about 160,000 words) is typically aligned and
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learned correctly, and the principal alignment rules are firmly established in the network weights.

Moreover, many of the remaining words are aligned correctly, and are only pronounced incorrectly due to

subtle variations in the vowel sounds.  Also, there are no new words introduced beyond the 15 letter word

stage that have no letters at all aligned and pronounced correctly, and those letters that are correct act to

strongly restrict how the rest are aligned.  It turns out that a very good indication of the remaining

unconstrained target phoneme positions can be obtained by simply identifying the existing non-blank

outputs for each word, and “patching-up” the largest errors to result in the right number of output

phoneme positions.  Following that with a simple check of how swapping each blank with each non-blank

affects the total error, usually gives a confirmation that the alignment is good, but occasionally finds an

improved alignment.  This faster “patch-up” process might still appear costly, but since all the network

output activations are already computed, it usually has negligible computational cost compared with

passing the activations through the network and computing the outputs in the first place.  Even if this

approach fails to identify the best possible alignment for a particular word, it will rarely get it totally

wrong, and the combination of weight updates for all words will still improve the alignments ready for

the next round.  In the same way that random initial alignments eventually lead to good alignments, so do

any less than perfect choices of output targets here.  The effect of this switch to a faster approximate

multi-target approach will be tested empirically by introducing the switch at an earlier stage and

comparing the resulting performance against the standard switch point.

4   Optimizing the Learning Process

Having specified the neural network architecture, and identified the key problems and solutions for

scaling up to large scale datasets, there remain several details that need optimizing for the best

performance levels to be obtained.

The earlier small-scale implementations [10, 11, 13] all used the standard sum-squared-error measure

for the gradient descent learning, but it has since been established that the cross-entropy error measure

works better for classification type networks with sigmoidal outputs [16, 20], so that is used here.  A

gradient descent learning rate of 0.1 proved to result in learning that progressed reasonably quickly, but

not so fast that the networks settled prematurely into inappropriate alignments, or kept switching

unnecessarily between different target alignments.  Varying the output error training tolerance between

0.1 and 0.3 led to no significant differences in the performances achieved, so a value of 0.2 was used.

The number of hidden units had to be large enough that the associated connection weights could easily

accommodate all the necessary pronunciation rules, but not so large that the network took too long to
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train.  There is no need to worry about restricting the numbers to avoid over-fitting here – what might

generally be called “unwanted noise” in the training data are the irregular pronunciations, and in this case

the network does need to learn them.  A suitable compromise for the BEEP training data was found to be

2000 hidden units.

The neural network learning traditionally begins with all the weights and biases drawn from the same

uniform distribution of random numbers [16].  However, more complicated set-ups are consistently found

to emerge in studies in which different initial weight distributions are optimized for each part of the

network by processes such as simulated evolution by natural selection [20, 21], so it makes sense to

consider more carefully what is most appropriate here.  As discussed above, when thinking in terms of

having a good hierarchy of rules determining the correct phoneme outputs for each letter, it is natural to

expect that it would be best to only use the long range context information when the more local context is

not sufficient.  For the neural network architecture of Figure 1, that means the average magnitudes of the

weights connecting the more central input blocks to the hidden units should be higher than those

connecting the less central input blocks.  However, the learning algorithm determines those weight values

to minimize the training data errors, and that will not necessarily result in a set of weights that implements

a rule set that generalizes well.  The network designer can guide the learning process, though, by making

sure that the random initial values for the input to hidden unit weights are not set too high, so they are

more likely to stay low until larger values are needed.  This is also important for the incremental learning

approach adopted here, since it minimizes the disruption caused when extra context blocks suddenly

introduce additional random activations into the network each time the maximum word length is

increased.  The approach adopted here takes this idea to the extreme and has all the initial input to hidden

layer weights start from zero, to minimize any unnecessary contributions from the outer context blocks.

For similar reasons, it also starts all the hidden unit and output unit biases from zero.  That only leaves the

hidden unit to output weights starting from a traditional uniform distribution of random values in the

range [-1,+1].  To establish the advantage of this variation, it will later be compared empirically with the

more conventional approach of starting all the network weights and biases with a uniform distribution of

random values in the range [-1,+1].

The final detail that needs optimization is the fraction θ of words that must be learned to within the

output error tolerance at each stage of training before the maximum training data word length is

incremented again.  The initial expectation was that fairly high values of θ would work best, so the

preliminary version of this study [22] used 0.95, and found that varying it up to 0.99, or down to 0.6, had

no significant effect on performance.  However, a more complete investigation for this paper revealed that
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Figure 2.  Average absolute weights (AAW) for each of the 41 input unit blocks, shown on a linear scale

(left) and a log scale (right).  The weights for the long range context blocks are lowest for the proposed

network, more with non-incremental learning, and highest with a uniform initial weight distribution for

the whole network.

using much lower values actually leads to small, though significant, improvements in performance, so

θ = 0.2 will be used as standard for the remainder of this paper.

5   Quantifying the Learning Performance

To test the large scale neural network approach described above, 198618 words from the BEEP dictionary

[17] were used for training.  These consisted of the same 198632 words used in the Damper et al. study

[9], except for 14 very non-standard “words” that had many more phonemes than letters (e.g., REV”

pronounced “r eh v ax r ax n d” and “UNIV” pronounced “y uw n ih v er s ih t iy”), which were excluded

on the grounds that they were abbreviations that clearly deviated considerably from standard English

pronunciation.  Twenty independent runs of the standard set-up, using different random number seeds,

and numerous further sets of runs designed to explore variations in the details and parameters specified

above, all achieved 100% correct phoneme outputs on the training data.

When introducing non-standard features into neural network training, it is always important to check

that they really do lead to the expected advantages.  For that reason, the effect of the incremental training

approach and the non-traditional initial weight distributions on the resulting learned weights were

investigated.  Figure 2 shows the average absolute weight distributions after training for the proposed

networks, equivalent networks that learn from the complete set training words throughout (rather than

using the incremental scheme with the shorter words largely learned before moving on to longer words),
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and equivalent networks started with a uniform distribution for all the initial weights and thresholds

(rather than only having non-zero initial values for the hidden to output weights).  This confirms that the

proposed approach, particularly the initial weight distribution, really does restrict the unnecessary use of

long range context information when more local information is sufficient.

Naturally, it is really the quality of the resulting network outputs that is of primary importance here,

not the weight distributions that lead to them.  The crucial questions for this paper are: how good are the

resulting alignments, and how well do they compare with the symbolic approach of Damper et al. [9]?

There are two commonly used approaches for establishing alignment quality: intrinsic evaluation

involving direct alignment comparison against a manually-constructed gold standard, and extrinsic

evaluation involving comparisons of the resulting performances on the text-to-phoneme mapping task [2].

Generally, gold standard alignments are impractical for the very large datasets of interest here, so Damper

et al. [9] took the extrinsic route, comparing their alignments by measuring the associated generalization

performance on the Pronunciation by Analogy (PbA) system [1].  It is not totally obvious, though, that the

associated pronunciation performance really is the best measure of alignment.  All the neural networks

represented in Figure 2, and all the others tested with less than optimal parameter values, achieved 100%

on the training data, despite spanning a range of different alignment qualities, so good performance on the

training data will clearly not be a reliable indicator.  However, one would expect a more consistent or

regular alignment to allow a better hierarchy of rules to emerge (particularly in a rule based system like

PbA, but also in a neural network) and that will inevitably result in better generalization.  That measure

will therefore be used in the next section, but, first, a more direct measure of alignment quality will be

used to give an alternative performance indicator that might be deemed more reliable.

A suitable grapheme to phoneme consistency measure has actually already been formulated by

Wolff, Eichner & Hoffmann [23].  Given aligned strings of graphemes g ∈ G and phonemes f ∈ F, one

can easily compute the associated probabilities p(g), p(f) and p(g,f), and thus determine the entropy

€ 

H = − p(g, f ) log p(g, f )
g∈G , f∈F
∑

and mutual information

€ 

I = p(g, f )log p(g, f )
p(g)p( f )
 

 
 

 

 
 

f ∈F
∑

g∈G
∑  .

Then the required measure of mapping consistency is simply their ratio C = I/H.  A totally random G-F

mapping will have p(g,f) = p(g)p(f), leading to I = 0, and hence C = 0 (i.e., no consistency).  Conversely,

a perfect 1-1 mapping, with each grapheme associated with a single distinct phoneme, will have I = H,
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Approach C Average C Std. Dev. C Maximum Ensemble C

Proposed NN       0.5631 0.0010 0.5645 0.5637

Inc. Step θ = 0.95 NN       0.5606  ** 0.0012 0.5619 0.5630

Non-incremental NN       0.5553  ** 0.0055 0.5625 0.5560

Uniform initial weights NN       0.5612  ** 0.0020 0.5637 0.5628

Approx MT at length 8 NN       0.5629 0.0010 0.5643 0.5636

Approx MT at length 4 NN       0.5624 0.0012 0.5637 0.5628

Approx MT throughout NN       0.4868  ** 0.0076 0.5012 0.4934

Damper et al. [9]       0.5630 – 0.5630 –

Naïve Alignment       0.2276  ** – 0.2276 –

Table 1.  Alignment consistencies C (average, standard deviation, maximum and ensemble average over

20 runs) for the proposed neural network, six representative variations of it, the alignment generated by

Damper et al. [9], and the naïve alignment.  Averages differing significantly (unpaired two-tailed t-test)

from the corresponding proposed network are indicated by a * for p < 0.05, and ** for p < 0.01.

and hence C = 1 (i.e., perfect consistency).

Natural languages are never totally consistent, but never totally random either.  Wolff et al. [23] have

found consistencies around 0.75 for German and Dutch, and somewhat lower consistencies, around 0.65,

for English.  Large dictionaries like BEEP [17] also tend to include mixtures of regional variations and

significant numbers of errors, so they will result in lower consistencies, even if the alignment is carried

out as perfectly as possible.  Moreover, even basic features like the sizes of the grapheme and phoneme

sets can vary across different dictionaries or representations of the same language [9].  This makes it very

difficult to perform absolute consistency evaluations, but the measure C can still be used to provide

reliable comparisons of consistency for different alignments based on the same dictionary.

The neural network architecture, as shown in Figure 1, will map each individual letter to either zero,

one or two phonemes.  Thus. the natural “graphemes” G here are the letters, and the “phonemes” F should

correspond to the set of possible outputs.  This leads to the key neural networks studied achieving the

alignment consistencies C shown in Table 1, with the averages, standard deviations, and maxima obtained

from 20 runs.  The proposed neural network here achieves a consistency of 0.5631, which is significantly

better than the non-incremental learning approach (0.5553, unpaired two-tailed t-test, p = 0.00004), the

uniform initial weight distribution approach (0.5612, p = 0.0008), and even the case that simply has the

incremental threshold θ increased from 0.2  to 0.95 (0.5606, p < 10-5).  This provides further justification
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of the non-standard features and parameters of the proposed approach.

A natural concern with the multi-target approach is the computational costs involved in choosing

which of the many targets to train on, so faster variations that switch from the full multi-target learning

approach to the simpler approximate “patch-up mechanism” at word lengths less than the standard 16

were tested.  Switching at word length 8 does not give significantly different results to the standard case

(0.5629, p = 0.75), and even switching as early as word length 4 does not quite make a significant

difference (0.5624, p = 0.06).  However, the full multi-target approach really is needed for the initial

stages: attempting to use the “patch-up mechanism” throughout leads to a large reduction in consistency

(0.4868, p < 10-5).  This provides justification that the simplified “patch-up” approach is a good enough

approximation to the full multi-target approach, as long as it is not introduced too soon.

For comparison purposes, the consistency of the Damper et al. alignment [9] is also shown in

Table 1.  However, computing the consistency in this case is complicated by the fact that the alignments

are specified by inserting both “null letters” and “null phonemes”.  The null phonemes act in the same

way as they do in the neural network approach, but rather than allowing more than one output phoneme

per letter as in the neural network approach, any extra phonemes need to be aligned with null letters.  For

example, the word BOX leads to the 3-letter mapping “B O X ⇒  b oh k+s” in the neural network

approach, but the 4-letter mapping “B O X _ ⇒ b oh k s” in the Damper et al. [9] approach.  In the latter

case, it is most natural to take the grapheme set G to be the letters plus null, and the phonemes set F to be

the actual phonemes plus null.  That leads to a consistency C of 0.5560, which is rather poor compared to

the neural network results.  However, to have a fair comparison with the neural networks, one really

needs to modify their representation to match that used by the neural networks.  In particular, equivalent

grapheme and phoneme sets (G and F) should be used.  This can be done most easily by simply removing

all the null letters, and assigning the phonemes associated with them to adjacent real letters, but even this

is not straightforward.  For null letters at the beginning or end of a word, there is no doubt which real

letter the corresponding phoneme should be associated with.  However, when they appear mid-word, it is

not so obvious which real letter is appropriate.  The strategy that matches the neural representation most

closely has the extra phoneme associated with the real letter that comes first.  One can then compute the

consistency in exactly the same way as for the neural networks, and that results in the increased value of

0.5630, which is not significantly different to the average result for the proposed neural network.

The final result shown in Table 1 is the consistency of the naïve alignment that simply assigns one

phoneme to each letter from left to right till there are no more phonemes left.  This results in very low

consistency (0.2276), and confirms the need to do something more sophisticated.
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Given that the very different neural network and Damper et al. [9] approaches lead to remarkably

similar consistencies, one might wonder if a ceiling level of performance has been reached by both

approaches, or whether there remains scope for further improvements of the neural network approach.  It

is certainly clear from the details of the outputs for individual words that the two approaches are not

resulting in exactly the same alignments.  For example, the neural network does not allow a letter to map

to more than two phonemes, and that is a restriction the Damper et al. approach does not suffer.  For

standard English, this limitation will have little effect, because letters virtually never need to map to more

than two phonemes.  However, the BEEP dictionary contains a number of entries that are clearly incorrect

pronunciations, for example

DISGUSTEDNESS      ⇒    d ih s ih n t r ax s t ih d n ax s

IMPROBABLENESS   ⇒     ih m p r ae k t ih k ax b l n ax s

RECONGELATION     ⇒     r eh k ax n g r ae ch uh l ey sh ax n

and errors like this will be difficult to avoid completely in any very large pronunciation dictionary [19].

For many such anomalies, it will be impossible with only two phonemes per letter to accommodate the

extraneous phonemes at their appropriate positions, which can disrupt the alignment of the letters that are

actually pronounced correctly, and consequently result in reduced consistency.  Fortunately, the

restriction of the networks to two output blocks is not a fundamental limitation of the multi-target

learning approach.  For example, exactly the same type of multi-target learning network has been

demonstrated to successfully map individual phonemes to as many as four letters in a model of English

spelling [11, 12].  Of course, the number of potential alignments, and hence target outputs, will rise

rapidly as the number of output blocks is increased, so there are computational resource implications to

consider.  That, together with the relatively small number of serious errors in large dictionaries such as

BEEP, means that allowing more than two output phonemes per letter is probably not the most fruitful

route for seeking potential improvements.

A more promising route involves simpler optimizations of the neural network.  As with all neural

networks, the various details interact, and the key learning parameters (in particular, the learning rate, the

training tolerance, and the incremental threshold θ) all need to be optimized together.  A more exhaustive

testing of the various combinations has already resulted in the performance levels shown above being a

significant improvement over those reported in the preliminary version of this study [22].  Using an

evolutionary algorithm to automate that kind of simultaneous optimization process is known to be a good

strategy [20, 21], but the computational cost of doing that for the large-scale networks of interest here is
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prohibitive.  It remains possible that the parameter values and results presented in this paper are still not

the best that can be achieved, but extensive explorations of variations in the learning details and

parameter values have so far failed to identify any further significant improvements.

Another factor of relevance here is the inherent variance across runs of the neural network outputs

arising from the various random factors involved, such as the different random initial weights and the

different random orders of presentation of the training words.  It has been demonstrated in numerous

previous studies that ensembles of neural networks arising from independent training runs can be

combined together as a voting committee machine to achieve improved performance over the average

individual results, and sometimes even over the best individual results [21, 24, 25].  Such an approach can

be expected to work well whenever the errors made by individual networks are relatively rare and

uncorrelated, so they can be out-voted by the rest of the ensemble.  The final column of Table 1 shows the

consistencies C of the ensemble alignments for the main neural network variations.  It can be seen that the

ensembles do have a slightly better consistency than the average for each network type, but only in the

case of the sub-optimal θ value are they better than the most consistent individual network.  It seems that

any remaining alignment errors are either too few or too correlated for the ensemble approach to be of

significant advantage here.

6   Quantifying the Generalization Performance

The ultimate test of performance for text to phoneme mapping systems is their generalization ability, i.e.

how well they perform on inputs they were not trained on.  Damper et al. [9] used a leave-one-out cross-

validation scheme to measure that, but training a new neural network for every word in the training set is

clearly not a practical option.  Instead, the generalization of the proposed neural network was measured

using a standard 10-fold cross-validation approach.  That involves randomly splitting the full set of

training data into 10 subsets, training a new network on each of the ten combinations of nine subsets, and

testing on the remaining subset.

Unfortunately, a simple application of the standard cross-validation approach can potentially provide

misleading results here, because the whole concept of correct generalization is not straightforward.  The

first problem is that the full BEEP dataset actually contains multiple pronunciations for many words, and

only the first for each word was selected to give a workable set for training without additional context

information [9].  If part of that reduced word set is used for testing, it will obviously not include many

acceptable pronunciations, and the generalization performance will appear poorer than it really is.  The

obvious remedy might therefore be to use the full set of pronunciations for testing purposes, but there is
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still no guarantee that the BEEP dictionary contains the complete set of possibilities.  In fact, given the

range of acceptable regional variations in English pronunciation, and checking a small subset of the

dictionary by hand, it seems likely that it is actually very far from complete.  Moreover, as noted above,

the BEEP dictionary contains a number of items of dubious accuracy [19], and there is little chance of any

system generalizing to get those correct.

Most of the earlier smaller-scale psychological models of reading were trained on a standard set of

only a few thousand mono-syllabic words, and it was feasible to test them on standard representative sets

of a few hundred hand-crafted non-words, many of which did have a range of acceptable pronunciations

[7, 8, 11].  It is clear that such a hand-crafted approach is never going to be feasible for testing the large-

scale systems of interest here, and producing a reliable automatically generated set is effectively what the

proposed neural network model is being expected to do.

One computationally feasible way to proceed would be to pick a particularly consistent set of

alignment data and then use that to identify acceptable generalizations which may differ from the

potentially under-representative pronunciation found in the test set.  Clearly, it will not be sufficient to

simply take the most frequently occurring phoneme for each letter.  The first problem is that for many

letters, particularly the vowels, there is no clear winning phoneme.  For example, for the letter “A”, the

top three pronunciations found in the most consistently aligned dataset produced in this study are the

phonemes “ae” (30%), “ax” (25%) and “ey” (17%), leaving 28% for the others.  Moreover, simply

allowing the most common correspondences will not encompass many of the widely accepted rules of

pronunciation, such as the length of the preceding vowel sound depending on the presence or absence of a

final letter “E”, e.g., “MAT” being pronounced “m ae t”, while “MATE” is pronounced “m ey t”.

A compromise strategy involves working with a whole series of generalization measures, that begins

with only allowing the specific pronunciation listed in the test set, and then becomes increasingly lenient

about what variations are allowed.  This can easily be implemented by truncating the frequency ordered

list of phoneme alignments for each letter at the point at which the total coverage (as a proportion of all

mappings) is K, and accepting any of the phonemes in that list.  Only counting the test set pronunciation

as correct will correspond to K = 0.  Then using K = 0.2 also allows the most common phoneme for each

letter, that is a total of up to 26 extra matches.  Increasing as far as K = 0.8 allows multiple possibilities

for all the vowels and some consonants (“C” and “S”), totaling 51 matches in all.  By K = 0.99, the only

letter still matching a single phoneme is “V”, and there are 121 allowable extra matches in total, none of

which are obvious errors.  For the extreme K = 1.00, there are 838 matches in total, many of which would

be considered totally unacceptable by most English speakers.  Obviously, the number of generalizations
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Figure 3.  Typical progression of the generalization performance (percentage correct) during training of

the proposed network and three key variations, for leniency parameter K = 0, 0.2, 0.6, 0.99, as a function

of the number of training word presentations.

being counted as correct will increase with K, and there is no guarantee that the allowed variations follow

the normally accepted pronunciation rules, but it does enable individual users to choose which cut-off

point they consider most appropriate for their particular purposes.

The improving generalization performances during typical training runs are shown in Figure 3 for the

proposed network with standard incremental step threshold θ = 0.2, the same network with the much

higher θ = 0.95, the non-incremental variation of the proposed network, and the proposed network with

the training data pre-aligned.  The incremental step criterion θ clearly has a large effect on the speed of

the learning process, but the final performances are remarkably similar for all four cases.  Having access

to the whole training dataset at once in the non-incremental case does lead to a faster initial improvement

in performance for all values of the leniency parameter K, but by the end of training, the incremental
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Approach K = 0 K = 0.2 K = 0.4 K = 0.6 K = 0.8 K = 0.9 K = 0.99
Proposed NN 80.35 85.52 88.17 92.61 95.10 96.96 99.26

Inc. Step θ = 0.95 80.67 * 85.40 87.98 92.35 94.85 96.65 * 98.95 *

Non-incremental 79.49 ** 84.61 ** 87.27 ** 91.06 ** 93.66 ** 95.39 ** 97.64 **

Uniform initial weights 80.08 85.12 * 87.85 * 92.19 * 94.75 * 96.63 99.03

Approx MT at length 4 80.26 85.42 88.15 92.58 95.09 96.97 99.26
Aligned data 80.36 85.42 88.18 92.53 95.12 96.92 99.29

Aligned data, Non-inc. 79.77 * 84.96 ** 87.74 * 92.26 ** 94.92 96.80 99.29

Aligned data, Uniform 80.06 * 85.18 * 87.91 * 92.40 * 95.05 96.87 99.29

Damper et al. data 79.31 ** 84.85 ** 87.68 ** 92.40 * 95.15 97.18 * 99.28
Naïve aligned data 52.97 ** 58.90 ** 60.71 ** 63.63 ** 65.73 ** 69.53 ** 72.98 **

Table 2.  Generalization performances (percentages correct) of the proposed neural network and the key

variations for a range of leniency parameters K.  Values differing significantly (unpaired two-tailed t-test)

from the corresponding proposed network results are indicated by a * for p < 0.05, and ** for p < 0.01.

approach is performing slightly better.

A more rigorous comparison of the generalization results is provided by Table 2, which presents the

final performances of the key neural network variations for a range of values of the leniency parameter K.

Overall, nothing does better than the standard proposed network.  However, only training the standard

network on the naïve aligned data leads to performance that is much worse, with very large (>25%) and

highly significant (p < 10-5) reductions compared with the proposed approach.  Increasing the incremental

step threshold to θ = 0.95 has little effect, with marginally better results for the K = 0 case, and marginally

worse for K ≥ 0.9.  Switching to the non-incremental version leads to small (~1.0%), but significant

(p < 0.01), reductions in performance compared to the proposed approach, for all values of K.  Using a

uniform initial weight distribution results in a surprisingly small performance reduction (~0.5%), with the

individual differences only reaching significance (p < 0.05) for intermediate values of K.  Approximating

the later stages of the full multi-target learning approach by the faster “patch-up mechanism” does not

make a significant difference, even when it is introduced as early as word length four.  This pattern of

generalization performances is  in line with the alignment consistencies seen in Table 1, providing further

confidence that the consistency measure C really is a useful and reliable indicator of the alignment quality

and of the level of generalization performance that can be expected.

An important remaining question is whether the performance of the proposed multi-target learning

neural network is as good as that of an equivalent neural network that learns from the best pre-aligned
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training data throughout.  Table 2 shows three sets of results obtained by training on data with the best

alignment previously achieved by the multi-target approach.  For the standard proposed network, there is

no significant difference in the generalization for any value of K, confirming that performing the

alignment and mapping together gives the same results as performing them separately.  Using the

incremental learning approach is still important when using pre-aligned training data, but the reduction in

performance due to not using it is much smaller than for the non-aligned training data case.  For networks

with a uniform distribution of initial weights, there is no significant difference between the pre-aligned

and non-aligned training data cases, and the pre-aligned case still suffers a marginal performance

reduction compared with the standard proposed neural network using non-aligned training data.

The final comparison of interest is with the alignments achieved by the symbolic approach of

Damper et al. [9].  Unfortunately, testing their alignments by training the proposed neural network on

them is not straightforward, because of the significant number of words that are aligned by introducing

null letters.  As discussed above, the same words presented related problems in performing fair

comparisons using the alignment consistency measure C.  Accommodating those words in the neural

network representation requires the null letters to be removed and the associated phonemes treated as

additional phoneme outputs for the adjacent real letters.  However, that results in a some letters needing to

be mapped to more than two phonemes, which cannot be accommodated by the two output blocks of the

neural network.  That is relevant for 3625 words, and if all those words are simply removed from the

dataset, the Damper et al. [9] alignment consistency C increases from 0.5630 to 0.5685, which suggests

that doing so would give their alignment an unfair advantage over the neural network alignment.

Nevertheless, the resulting generalization comparisons as shown in Table 2 are mixed, with the Damper

et al. performance significantly worse (by up to ~1.0%) for the K ≤ 0.4 cases, marginally worse (~0.2%)

for K = 0.6, and marginally better (~0.2%) for K = 0.9.  Being unfair in the other direction, and simply

counting all the removed words as being incorrect, reduces all the Damper et al. results in Table 2 by a

factor of 0.9818, rendering them significantly worse than the proposed neural network results for all

values of K.

The standard (K = 0) generalization performances achieved by the neural networks are typically in

the region of 80%, which seems rather low compared to the earlier small scale psychological models [11].

However, that is not surprising given what was noted above about the test sets not containing the full set

of acceptable outputs, nor even the most regular acceptable output, for each word.  Damper et al. [9]

managed to achieve around 86% with their leave-one-out cross-validation scheme, but that involved using

a reduced dataset because, like the proposed neural network, the PbA pronunciation system they used
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could not accommodate “null letters”.  They proceeded by omitting all the words that had alignments

involving “null letters”, which accounted for about 10% of the full word set, and those missing words are

the very ones that any alignment and mapping system would be most likely to find difficult to

accommodate.  In fact, with those problematic words removed, the Damper et al. [9] alignment

consistency C increases from 0.5630 to 0.5711, providing confirmation that the reduced word set is likely

to over-estimate the generalization performance on the full word set.  Damper et al. [9] noted that if all

the omitted words were counted as incorrect, they would achieve a generalization performance of 76.1%,

which they considered “a very respectable result on such a sizeable dictionary”.  For the proposed neural

network approach of this paper, no such word removals are needed, so it appears that its generalization

results are actually better than those of the existing symbolic approaches.

7   Conclusion and Discussion

This paper has demonstrated how earlier neural network based psychological models of reading [10, 11,

13] can be scaled up to cope with the much larger dictionaries and word lengths required for modern

speech technology.  These neural networks automatically learn the text-to-phoneme alignment and

mapping simultaneously, with no performance reduction compared to learning the alignment and

mapping separately.  Key details of the proposed approach (such as non-standard initial weight

distributions, incremental training regimes, computational speed-ups, and different parameter values)

have been explored, with the best specifications identified.  The resulting text-to-phoneme alignment

consistencies and pronunciation generalization performances have been shown to be at least comparable

to the existing state-of-the-art symbolic rule-based systems [5, 9].

There remain numerous potential variations of the standard approach presented in this paper.  For

example, one might expect to obtain a more consistent mapping and better generalization by initially

training the networks on a subset of the training data that has the most consistent letter-phoneme

mappings, and only training on the remaining words after those have been learned.  The difficultly is in

deciding what to use as the initial consistent training data subset.  If only the most common phoneme

were allowed for each letter, there would clearly be 26 allowed alignments, and the consistency C of the

allowed training words would be high, but there would be very low coverage of the whole training data

set.  As Figure 4 shows, the more alignments that are allowed (e.g., by increasing the parameter K

discussed previously), the lower the consistency, and the greater the coverage of the whole set of training

data.  A reasonable compromise uses K = 0.8, which corresponds to 51 alignments (i.e. an average of

about two phonemes per letter), C = 0.7332, and 29.6% coverage.  The slightly counterintuitive result of
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Figure 4.  Increasing the number of allowed letter-phoneme alignments, from 1-1 to as many as needed,

results in increasing coverage of the training data set but decreasing alignment consistency C.

pre-training on this high-consistency data subset is that the alignment consistencies C of the final trained

networks are actually reduced rather than increased.  The average final C over the ten cross-validation

sets is 0.5591 for this two stage approach, compared with 0.5620 for the standard approach.  The

difference is small, but it is highly significant (p = 0.0002).  Investigating the individual mappings learned

by the networks reveals that forcing them into a fixed consistent framework in the initial stage acts to

restrict the flexibility for accommodating the less regular mappings required later, and that reduces the

final overall mapping consistency.  This reduction in alignment consistency is also reflected in the

generalization results, with the two-stage approach slightly, but significantly, worse for all K ≥ 0.2, and

not significantly different for K = 0.

In some ways it is reassuring that more complex training regimes like this, which one might think

would be required to achieve the best performances, are not actually necessary, and that the whole neural

network approach is so robust with respect to its details.  Even when there are significant performance

reductions due to not incorporating a certain feature, such as the proposed incremental learning scheme,

the resulting differences in generalization performance are rarely more than about one percent.  It is also

encouraging to find that employing relatively fast approximations to the full multi-target training

approach does not significantly degrade the resulting performance, rendering the whole approach not

much more computationally intensive than a standard back-propagation network.

So far, no further variations of the standard neural network approach proposed in this paper have

been found to lead to improved results.  Obviously, there remain other possible variations that have yet to

be explored, but the similarity of the alignment consistencies and generalization results from the key
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variations studied suggests that both the neural network and the symbolic approaches are now operating at

close to ceiling performance levels for this particular task.  Even though further refinements of both

approaches might be possible, there is currently no indication that either will end up with substantial

performance advantages over the other.  The fairly straightforward neural network approach of this paper,

with its ability to learn the alignment and mapping simultaneously, will be considered by many to be a

simpler and superior approach.  However, given the long history of the symbolic versus neural network

debate [15], it is seems unlikely that this paper will have the last word on this matter.  Nevertheless, it will

certainly require very little extra effort now to apply the ideas and neural networks presented in this paper

to related tasks, such as alternative English dictionaries, other languages, and even the reverse mapping

(i.e. phonemes to text as required for spelling).
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