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Abstract 
A population-based simulation framework is presented that 
allows a principled approach for exploring gender inequalities 
in professional hierarchies such as universities or businesses, 
and how they might emerge, evolve and be rectified.  Results 
from a representative range of cases involving gender-based 
discrimination and intrinsic gender-based ability differences are 
presented to demonstrate the power of the approach.  Such 
artificial life simulations will hopefully inspire and facilitate 
better approaches for dealing with these issues in real life.  

Introduction 
There has been much discussion in recent years about gender 
imbalance in certain professions, such as university computer 
science departments (e.g., Camp, 1997; Altonji and Blank, 
1999; Handelsman et al., 2005; Moss-Racusin et al., 2012), 
and how one might go about rectifying such situations, for 
example by better advertising or positive discrimination.  
However, it is often difficult to identify the best solutions 
when it is not clear what the main causes of the imbalance are 
(Halpern et al., 2007), and applying solutions based on 
incorrect assumptions could easily make matters worse.  

One obvious potential cause of imbalance is simple 
discrimination against a particular gender (e.g., Davison and 
Burke, 2000; Moss-Racusin et al., 2012), and if that cannot be 
prevented, some form of positive discrimination might be an 
appropriate remedy.  Another possible cause is that one 
gender might have evolved to be intrinsically less able (either 
on average or in the tails of the distribution) in a particular 
area (e.g., Geary, 1998; Browne, 2002; Baron-Cohen, 2004; 
Halpern et al., 2007; Halpern, 2012), and that results in less 
success in that area, and hence a tendency for that gender to 
avoid entering related professions in future.  It is not obvious 
what interventions here would be most beneficial, or whether 
any intervention at all would be a good strategy.  Another 
possibility is that, despite having intrinsically equal ability in 
the chosen area, one gender is disadvantaged by other factors, 
such as delays in career progression caused by child rearing 
and maternity leave (e.g., Ceci and Williams, 2011), and these 
cases may require different forms of intervention.  

The idea of using computer simulations to model such 
situations and explore the best strategies for intervention in 
complex processes such as these is not new (e.g., Martell, 
Lane and Emrich, 1996; Robison-Cox, Martell and Emrich, 
2007; Helbing, 2010), but what might not be so widely 

appreciated is that population-based simulations with ability-
based selection of the type commonly used in computational 
intelligence (e.g., Engelbrecht, 2007) and artificial life (e.g., 
Bullinaria, 2009, 2010) can be effective for exploring the key 
causes, effects and solutions here.  They can also model the 
evolution of such factors by natural selection.  Moreover, the 
known methodological pitfalls that commonly arise with 
agent-based approaches to social and economic simulation 
(Richiardi, Leombruni, Saam and Sonnessa, 2006) are well 
understood in the field of artificial life and can thereby more 
easily be avoided.  This paper presents a general framework 
for performing such simulations, and provides a selection of 
results that illustrate the power of this approach.  

The remainder of this paper is organized as follows:  The 
next section describes the proposed simulation framework and 
its associated simplifications and assumptions.  Then results 
from some preparatory baseline simulations are presented to 
establish appropriate values for the various free parameters.  
The next two sections show how those results differ in the 
cases of gender-based ability differences and discrimination.  
Finally, the effect of interventions, and how the evolution of 
individual preferences affect the results, are explored.  The 
paper ends with some conclusions and discussion.  

Simulation Framework 
This study begins by setting a few basic principles, and then 
explores what is possible within that general framework.  The 
idea is to have an evolving population of individuals, with a 
range of intrinsic (innate) abilities, who can progress during 
their lifetimes to improve their position within their chosen 
professions.  To draw reliable conclusions, the simulations 
need to be kept as clear and unbiased as possible (Bullinaria, 
2009, 2010).  Therefore, for the purposes of this initial study, 
a number of simplifying assumptions are made that help avoid 
any unnecessary confounding factors and also reduce the 
computational costs of the simulations to feasible levels: 
1. There are two distinct genders, which are chosen 

randomly at birth with equal probability, and overall are 
equally able.  

2. The distributions of innate individual abilities are the 
result of the evolutionary past, but are fixed for the 
duration of each simulation.  

3. There are two distinct professions, which overall are 
equally valuable.  



4. The initial individual abilities for each profession are 
determined randomly at birth and follow a normal 
(Gaussian) distribution.  The means and/or the standard 
deviations of those distributions may depend on gender.  

5. If one gender has higher mean ability in one profession, 
the other gender will have an equally higher mean ability 
in the other.  The effect of the magnitude of such 
differences is one of the key factors to be explored.  

6. Each individual can choose their profession randomly, or 
according to their abilities, or could have an intrinsic 
gender-based preference (i.e., probability) for choosing 
one profession over the other.  Such preferences might 
emerge during the course of the simulations.  

7. Individuals grow older, potentially improve their abilities 
through experience in their profession, and eventually 
retire and leave the working population.  

8. Professional development involves a series of stages, and 
promotion between them is (by default) determined purely 
according to the best abilities currently available at each 
level (Rosenbaum, 1979).  Discrimination or intervention 
in that process are other key factors to be explored.  

9.  If an individual does not get promoted within a set number 
of simulated years, they are likely to give up and leave the 
working population.  It is also possible that varying 
percentages of individuals leave the working population 
for other reasons.  Such details will need to be explored.  

10. Individuals leaving the population are replaced by new 
individuals, and profession preferences may be based on 
the more successful individuals of previous generations.  

There clearly remains much scope for variations within this 
general framework, and what emerges will depend on the 
relative magnitudes of the various parameters involved.  
There is also scope for variations designed to investigate the 
consequences of these initial simplifications.  

The simulations follow common Artificial Life procedures.  
For each new individual in the population, a record is created 
and initialized with their innate gender, intrinsic abilities for 
the two professions, and any preferences for the professions.  
Thereafter it will be regularly updated with their age, chosen 
profession, stage in their profession, and number of years 
since reaching that stage.  After updating for a number of 
simulated years, the population averages will settle down into 
a steady state, and the relevant results can be computed.  

In principle, the above general framework can be used to 
simulate “professions” in any species.  For example, food 
provision versus offspring protection in wild dogs.  However, 
this paper will concentrate on abstract human professions, and 
therefore adopt human-like lifetimes and other parameters.  
It will assume, for simplicity, that all individuals enter their 
chosen profession at age 20 and retire at age 70, and that each 
profession has 7 stages, so 6 promotions are required to reach 
the top stage.  Again for simplicity, it will be assumed that 
there is just one employer for each profession, so there is no 
need to simulate transfers between employers, or sub-groups 
of eligible individuals being considered at each promotion 
stage, as that is already known to bias the results (Lyness and 
Judiesch, 1999).  A population size of 10,000 provides a 
sufficient number of individuals per profession per stage per 
gender for a reasonable level of competition at each stage, 

even when the distributions become skewed.  The ability 
scale is measured in arbitrary units, and that will be set 
(without loss of generality) by taking the standard deviation of 
the initial Gaussian distributions to be 1.0, and measuring all 
other ability differences relative to that.  

A workable grain size for the simulations is one round of 
updates per simulated year, and 10,000 simulated years is 
plenty for all populations to settle down into a stable final 
state.  Updating the individual ages, applying any ability 
increments, and replacing retired and removed individuals is 
straightforward.  Dealing with the promotions between the 
stages of each profession requires further specification.  One 
approach is to maintain pre-chosen numbers at each stage to 
correspond to typical companies (e.g., Robison-Cox, Martell 
and Emrich, 2007).  An alternative approach, adopted here, 
is to promote a fixed fraction x of eligible individuals at each 
stage in each profession each year.  Varying the promotion 
criteria and x, and requiring a certain number of years at a 
given stage before becoming eligible, are factors that will 
need to be explored empirically.  Finally, an important aspect 
of this study is to incorporate into the standard setup a whole 
range of parameterized ability differences, discriminations and 
interventions that might be considered relevant.  

The output of each simulation will usually be the final 
population of individuals, each with a gender, age, preference 
for profession, profession, ability in their chosen profession, 
and profession stage.  Typically, the main factors of interest 
will be the various differences in population means between 
genders, such as how the profession preferences and numbers 
at each profession stage depend on gender (e.g., Robison-Cox, 
Martell and Emrich, 2007).  Sometimes the evolution of the 
key parameter values throughout the simulation will also be of 
interest.  To obtain reliable results, means and standard 
deviations over thirty runs of each simulation are computed, 
and unpaired t tests are used to determine the statistical 
significances of any differences found.  

Baseline Simulation Results 
The approach adopted is to first present the results from the 
simplest possible simulation set-up, and then systematically 
investigate how the potential variations affect those baseline 
results.  Such a sequential approach also facilitates the 
setting of the various parameter values at each stage. 

The baseline case simply has the most able individuals 
promoted at each stage, with an equal promotion fraction x at 
each stage varied from 0.01 to 0.05.  The resulting numbers 
at each profession stage are shown in Figure 1.  For very 
small x values (0.01), no individuals reach the upper stages.  
For high values (0.04 and above), more are in the highest 
stage than in some of the lower stages.  Values around 0.02 
to 0.03 probably come closest to realistic situations in 
academia or industry where there is a pyramid structure with 
fewer individuals as one moves up the hierarchy (Rosenbaum, 
1979).  Having different promotion fractions xs for each 
stage s might be required to model realistic scenarios, and that 
can easily be done, but, for simplicity, the following will 
continue with a single value x across all stages. 

The first variation requires individuals to wait at each stage 
for a certain number of years w before they become eligible 
for promotion.  Now, a higher proportion of eligible 



individuals need to be promoted each year to fill the higher 
stages.  For a promotion fraction of 0.06, the effect of 
varying the required number of years w from 0 to 8 is shown 
in Figure 2.  For 0 years, the promotion fraction is too high, 
as seen in Figure 1.  Waits w of around 6 years lead to a 
reasonable distribution of individuals across the stages.  

The next variation explores the effect of giving up and 
leaving the profession if promotion is not achieved within a 
certain number of years g after becoming eligible.  Now, a 
slightly shorter wait w is needed so sufficient numbers are 
eligible for promotion at each stage.  For a promotion 
fraction of 0.06 and a 4 years wait for eligibility, the effect of 
varying the number of years g before giving up from 4 to 32 is 
shown in Figure 3.  For g = 32 years, there is little difference 
from never giving up.  For fewer years, the numbers at later 
stages fall more sharply, and since the total number of 
individuals is fixed, there are more at the initial stage. 

For situations that have learning or experience increase the 
individuals’ abilities in line with the number of years in their 
chosen profession, or at each stage in that profession, it will 

be interesting to investigate the different age distributions that 
emerge for each gender at each stage, and to go on to explore 
the effect of factors such as maternity leave.  

Exploring Gender-based Ability Differences 

Having seen how the three promotion parameters (x, w, g) 
affect the distribution across stages, explorations of the effect 
of gender differences can begin.  The baseline simulations 
suggest that a promotion fraction of 0.06, a 4 years wait for 
eligibility, and giving up after 12 years, provides a reasonably 
realistic basis for the forthcoming simulations. Varying those 
values by small factors will inevitably change the results, but 
is unlikely to affect the general emergent patterns.  

To begin, separate distributions for the two genders (Gen0 
and Gen1) can be plotted for the case when each individual 
randomly chooses one of the two professions.  Figure 4 shows 
the results for one particular profession when the gender 
difference is zero as above (Dif 0), and when the mean 

  
Figure 3:  Number of individuals at each stage for promotion 
fractions x = 0.06 and wait w = 4 for different numbers of 
years g without a promotion before giving up and leaving. 

  
Figure 1:  The initial baseline results showing the number of 
individuals at each profession stage and how that varies across 
a range of different promotion fractions x.  

  
Figure 4:  Number of individuals at each stage for x = 0.06, 
w = 4 and g = 12 for each gender (Gen0, Gen1) with no ability 
difference (Dif 0) and one std. dev. difference (Dif 1). 

  
Figure 2:  Number of individuals at each stage for promotion 
fractions x = 0.06 for different numbers of years w required at 
each stage before becoming eligible for promotion. 



abilities differ by one standard deviation (Dif 1).  Obviously, 
there is no significant gender difference in the zero difference 
case.  For a unit difference, the more able gender (Gen0) for 
the given profession has more individuals at the higher stages, 
and fewer stuck at the initial stage.  The effect of dropouts 
also affects the total number of each gender participating in 
the profession.  For the Dif 1 case there are 2746 (std. dev. 
39) of Gen0 and only 2276 (std. dev. 40) of Gen1, which is a 
significant difference (t test, p < 0.01).  For Dif 0, there are 
2511 (std. dev. 54) of Gen0 and 2500 (std. dev. 46) of Gen1, 
with no significant difference (t test, p > 0.05). 

If, rather than choosing their profession randomly, each 
individual were to choose the profession for which they have 
the best ability, the outcome is rather different as shown in 
Figure 5.  Again there is no significant gender difference for 
the Dif 0 case, but for Dif 1 there is a massive statistically 
significant (t test, p < 0.01) reduction in the number of Gen1 
individuals choosing the profession, 1114 (std. dev. 44) 
compared to 3893 (std. dev. 52) for Gen0.  Figure 6 shows 
the Dif 1 results for random choice of profession (rand) and 

choice of best profession (best), as percentages of the whole 
population of each gender at each stage in the profession.  
The ability-based choice of profession brings the gender 
distributions a little closer together, but Gen1 still has much 
reduced numbers at the higher stages compared to Gen0.  

Another way of representing the data is as the percentages 
of each gender at each stage.  Since these always total 100%, 
it is sufficient to present the results only for Gen1.  These are 
shown in Figure 7 for best and random profession choice.  
For no gender difference (Dif 0), the percentage of Gen1 at 
each stage is not significantly different to 50%.  For Dif 1 
and random profession choice, the proportion at stage 1 is 
slightly over 50% (due to weaker individuals waiting for a 
promotion that never comes) and then falls for later stages.  
When the best profession is chosen, there is a lower starting 
point, and a slower fall off at later stages.  A gender-based 
ability difference leads to stage distribution percentage 
differentials even when self selection leads to reduced 
participation of the less able gender.  This kind of pattern, 
known as a shrinking pipeline, is found in real populations, 

  
Figure 7: The percentage of Gen1 at each stage, with and 
without ability differences (Dif 1, Dif 0), for random choice of 
profession (rand) and choice of best profession (best). 

  
Figure 5:  Number of individuals at each stage for same set-up 
as Figure 4, but with each individual pursuing the profession 
they are best at, rather than choosing one at random. 
 

  
Figure 8:  The percentage of Gen1 at each stage, for equal 
(Var 1) and half (Var 0.5) ability variance, for random choice 
of profession (rand) and choice of best profession (best). 

  
Figure 6:  The Dif 1 results of Figures 4 and 5 as percentages 
of the whole population of each gender, for random choice of 
profession (rand) and choice of best profession (best). 



(Camp, 1997), though not necessarily for the same reason.  
Interestingly, similar shrinking pipelines can arise even 

when there is no difference between genders in their mean 
abilities.  If the variance in abilities for Gen1 is less than that 
of Gen0, as apparently happens with some human skills (e.g., 
Humphreys, 1988), that can give Gen1 a disadvantage at later 
stages of promotion, even if the means are the same for each 
gender.  Figure 8 shows the effect of a factor of two in 
ability variances for random and best choices of profession.  
Similar patterns also arise when there are combinations of 
mean and variance differences.  It is clear that there are 
many possible types of gender differences in ability that can 
account for the unequal gender distributions observed in real 
professions.  From the simulation point of view, one can add 
further realism by replacing the simple Gaussian distributions 
used here with something more appropriate, but determining 
what those distributions should be might not be so easy (e.g., 
Benbow, 1988).  Of course, the observed differences may 
also occur when there are no ability differences at all, and that 
is what will be investigated next.  

Exploring Gender-based Discrimination 
Perhaps the question of most practical importance is: how do 
the above patterns of gender differences vary when, rather 
than any intrinsic ability difference, there is discrimination 
against a particular gender?  Given the range of possibilities, 
it is not feasible to study all types of discrimination here, nor 
the potential reasons for them.  However, to demonstrate the 
power of the simulation framework, it is sufficient consider a 
simple abstract case.  In particular, suppose an individual of 
one gender had to be vastly superior to a rival of the other 
gender before being promoted before them.  That might, for 
example, arise due to different perceived prior probabilities of 
the abilities for the two genders (that are not necessarily 
correct) being used in conjunction with the actual evidence 
submitted with the promotion application.  It could also be 
indirect, rather than direct, discrimination, for example due to 
one gender being less likely to be awarded prestigious invited 
talks or prizes (e.g., Gürer and Camp, 2001), or due to the 
promotion criteria being skewed in favour of one gender (e.g., 
Schneider, 1998; Ginther and Hayes, 2003; Mixon and 
Trevino, 2005).  To be specific, the above simulations were 
re-run with a Gen1 individual only being promoted in 
preference to a Gen0 individual in the profession of interest 
when their ability is at least one unit higher.  The symmetry 
was maintained by having discrimination in the opposite 
direction for the other profession.  That leads to exactly the 
same stage distribution as in Figure 4 for the case when the 
Gen0 ability distribution really was one unit lower.  

What is different between the discrimination and ability 
difference cases is the average abilities at each stage  A 
similar pattern emerges for both random profession choice 
and ability-based choice, though choosing according to ability 
not surprisingly leads to better ability levels throughout.  In 
the ability difference case (Dif 1), the ability of the weaker 
Gen1 is lower than Gen0 at the entry stage 1, but the ability-
based promotions lead to much closer ability levels at later 
stages.  In the discrimination case (Disc 1), the Gen0 abilities 
are reduced to the same degree as the Dif 1 case, because 
there is less competition for promotion, but the Gen1 abilities 

are much higher, due to the extra ability required to achieve 
promotion.  Similar, though smaller (half a std. dev.) gender 
differences in ability have been observed in real corporations, 
suggesting that the presence of gender discrimination there 
(Lyness and Heilman, 2006).  That, of course, does not mean 
there is necessarily a gender discrimination based glass ceiling 
in all cases, but there is certainly evidence consistent with that 
existing elsewhere too (e.g., Sabatier, 2010).  

It is often suggested that indirect forms of discrimination 
are discouraging young women from entering particular 
professions, such as computer science, in the first place (e.g., 
Gürer and Camp, 2001).  This effect can be modelled too, 
with the above simulations run in the same way whatever 
factor is reducing the numbers entering the given profession.  
The simplest possible case has no other promotion-based 
discrimination and no intrinsic ability differences, and the 
results in Figure 9 show for two rather different starting 
fractions that, as long as the profession is chosen randomly, 
those fractions persists throughout the stages.  However, if 
the individuals that choose the profession are doing so 
according to their best abilities, they are likely to be at the 
higher end of the ability distribution, and fair promotions will 
allow them to rise quickly through the stages so that the 
gender proportions become equalized at the highest stages.  

Figures 7, 8 and 9 demonstrate how rather different pipeline 
patterns emerge depending on the situation simulated.  These 
are the “pure” cases.  In practice, there is likely to be more 
than one form of ability or discrimination difference present, 
and untangling the various factors will be a challenge.  This 
is where the simulation approach proposed here will prove 
most useful, as it enables all the possible combinations and 
variations to be simulated relatively easily and reliably, with 
the inevitable interactions accommodated automatically.  

Exploring Intervention Policies 
The shrinking pipelines and gender differences in the numbers 
entering some professions are often argued to be important 
issues that need addressing.  For example, the lack of women 
in certain higher stages of academia might discourage women 
from studying those subjects and that may lead to critical 

  
Figure 9:  Percentage of Gen1 at each stage, with no ability 
or discrimination differences, starting at half or quarter total, 
for profession chosen randomly (rand) and by ability (best). 



skilled-worker shortages some areas (e.g., Camp, 1997).  
The classic intervention would be to simply make sure that 

the numbers of each gender at each stage of each profession 
are as equal as possible.  That can be implemented easily by 
ranking the eligible individuals of each gender separately, and 
promoting equal numbers of each gender to the next stage to 
give the required total number of promotions overall.  The 
consequence of doing that in the above simulation framework 
does then lead to no significant number differences between 
the baseline, gender-based ability difference, and gender-
based discrimination cases.  

This intervention results in the expected differences in the 
corresponding abilities.  All groups have the same average 
ability at each stage, except the less able Dif 1 Gen1 case 
which is one unit below at all stages, because equal numbers 
of promotions are taking place despite the lower ability levels 
of that gender.  That leads to the important practical question: 
what is the average ability of the individuals at each stage, 
irrespective of their gender.  That is shown in Figure 10.  The 
baseline (Base) and baseline with intervention (Base Int) 
results are identical, since there is no gender imbalance for the 
intervention to correct, and these exhibit the best average 
abilities overall.  The discrimination (Disc) case is slightly 
worse, since it unfairly allows weaker Gen0 individuals into 
the upper stages, rather than more able Gen1 individuals.  
The discrimination with intervention (Disc Int) case is no 
different to the base case, since the intervention successfully 
corrects the discrimination-based imbalance, and once again 
allows the best individuals at each stage to be promoted.  
The innate ability difference (Dif) case is overall worse than 
the base and discrimination cases, because that corresponds to 
Gen1 individuals having lower abilities than the base case, 
and that inevitably brings the population averages down.  
Obviously, if the gender difference corresponded to improved 
abilities for Gen0 over the baseline, rather than reduced 
abilities for Gen1, that would lead to improved population 
averages over the base case.  The important question is: what 
will the consequences of intervention be in this case?  As 
Figure 10 clearly shows, this makes the overall population 
performance (Dif Int) worse, particularly at the higher stages, 
since it forces the promotion of weaker Gen1 individuals over 

better Gen0 individuals.  This highlights the importance of 
understanding the problem before trying to correct it.  

Evolving Preferences for Professions 
So far, the simulations have been run for many generations to 
allow enough time for the various population distributions to 
stabilize, but none of the innate properties or preferences have 
been allowed to evolve or change from one generation to the 
next.  However, the steady-state evolutionary computation 
approach underlying the general framework proposed here can 
automatically allow any inherent parameters (such as gender-
based abilities, or preferences for particular professions) to 
evolve by natural selection if required (Bullinaria, 2009).  In 
some species, such factors may be encoded genetically, but 
for current human professions it is more likely that such 
information will be passed on mimetically, in the form of 
social learning or mimicry (Bullinaria, 2010).  For example, 
low take-ups of particular professions could emerge as a 
sensible reaction to poor progress in that profession by 
members of their gender in previous generations.  There are 
clearly many such factors that could usefully be explored in 
the proposed simulation framework, and many ways they 
could be implemented, but one simple example should suffice 
to demonstrate the power of the simulation approach.  

Suppose individuals choose their professions stochastically, 
rather than according to their abilities, but with particular 
intrinsic probabilities.  The initial population would have 
equal preferences for the two professions, but individuals in 
later generations will have preferences that vary according to 
the success of recently replaced individuals.  There are many 
ways that can be implemented, but one approach is enough to 
illustrate what typically emerges: each new individual copies 
the preference probabilities of the more successful of the last 
two replaced individuals (i.e. the one with the highest final 
position) but with a random “mutation” added from the range 
[-0.02, 0.02].  Those small mutations are sufficient to allow 
the preferences to drift away from the symmetric 0.5 values if 
a final position advantage emerges from doing so.  

There are eighteen distinct combinations to consider: three 

  
Figure 10:  The average overall abilities at each stage for the 
standard and intervention populations for the three situations.  
The Base, Base Int and Disc Int results are identical. 

  
Figure 11:  Average positions (profession stages) achieved 
by one particular gender while strong profession preferences 
emerge.  The speed of change is parameter dependent.  



basic conditions (baseline, gender-based ability difference, 
and gender-based discrimination), three profession choice 
approaches (by best ability, purely random, and random with 
intrinsic preferences), and each case can either involve, or not 
involve, intervention to equalize the numbers of each gender.  
Clearly, all the baseline cases, all the ability-based and pure 
random profession choice cases, and all the intervention cases, 
lead to the average preferences remaining at 0.5 because there 
is nothing to drive natural selection away from that symmetric 
case.  However, those cases were still run to provide a check 
that no unexpected biases exist in the simulations.  If there is 
no intervention, both the ability difference and discrimination 
case preferences shift towards the profession where the 
greatest success is most likely, while the preferences for the 
baseline case remain near 0.5 as expected.  This is probably 
the simplest explanation of many of the observed gender 
differences in the numbers entering certain professions.  

Since the professions and genders are set up symmetrically, 
and there is a fixed promotion rate at each stage, the overall 
average position at any given time for each gender must be 
independent of all the other factors, including any changing 
profession preferences, so it is not obvious what the changes 
really are optimizing.  Figure 11 shows the average positions 
achieved by one gender as the preferences emerge when either 
an ability difference or discrimination favors Prof2 advances.  
The average positions achieved in both professions decrease 
as a result of the preferences changing away from being equal.  
Both genders gravitate towards the profession they do best at, 
increasing the competition there, and reducing the average 
position there for their gender.  Those individuals remaining 
in the other profession face a larger pool of competitors of the 
better performing gender, and they are worse off on average 
too.  It is the higher numbers in the best profession for each 
gender that keeps the average position constant throughout.  

Often the most important issue for the businesses concerned 
is the average abilities at each stage in the two professions, 
irrespective of the genders involved.  Figure 12 shows the 
ability levels at each stage after strong preferences emerge.  
Each profession employs individuals almost exclusively of 
just one gender, so the effects of gender-based discrimination 

or ability differences are very small, and all the ability levels 
converge, except for the very few individuals who persist in 
the profession that discriminates against them.  

A final question of interest here is how does the emergence 
of profession preferences affect the society as a whole, given 
that they have been driven purely by individuals wanting to 
reach higher positions in their chosen profession.  Figure 13 
compares the ability levels for each gender in their most 
appropriate profession.  The best abilities overall come from 
ability-based profession choice, and the worst abilities come 
from a random profession choice.  That is to be expected, 
given that random choice means many individuals will not 
end up performing according to their best potential.  The not-
so-obvious result is that emergent profession preferences are 
able to bring the ability levels close to the ability-based levels, 
particularly for the higher stages.  This might be important 
for the population as a whole if the abilities are difficult to 
assess before the profession choice needs to be made.  

Conclusions and Discussion 
A general population-based framework has been proposed that 
enables the simulations of gender-based differences in various 
professions that involve ability-determined promotions up 
some form of hierarchy.  The representative results presented 
were primarily chosen to demonstrate that the models do lead 
to reliable results in key simplified scenarios, though the 
approach can also be used to generate novel results for known 
real-world scenarios.  The simulations presented have served 
to show how the principal factors can be studied effectively 
within the framework, and illustrated how distinct causes can 
lead to indistinguishable consequences, how preferences are 
able to emerge by natural selection, and how inappropriate 
interventions can make matters worse rather than better.  

To simplify the presentation, all the simulations reported in 
this paper have only involved two professions, and all the 
gender-based differences have been symmetric across those 
professions.  In reality, of course, there are many more than 
two professions, and a distinct lack of symmetries, but the 
proposed simulation framework is general enough to cope 

  
Figure 13: Ability levels for each gender in their appropriate 
profession for the ability difference (Dif 1) or discrimination 
(Disc 1) cases, for the three profession choice approaches. 

  
Figure 12: Ability levels for each gender (Gen0, Gen1) in the 
baseline (Equal), ability difference (Dif 1) and discrimination 
(Disc 1) cases, for preference-based profession choice. 
 



easily with such complications.  The results presented in this 
paper will then serve as the baseline against which those more 
realistic simulations can be compared.  

There are clearly many other factors that could be built into 
the simulations, so hopefully this modeling approach will 
become more widely used in the future.  A key issue is that 
there are too many potential gender-based effects to simulate 
all the possible combinations, but there are numerous specific 
hypotheses that could be tested empirically with the approach.  
One concerns the effect of gender differences in risk taking 
leading to differences in the variance of abilities (e.g., 
Schubert, 2006; Robison-Cox, Martell and Emrich, 2007).  
Another relates to distinct career paths to the top levels of 
some professions, with different gender effects on each (e.g., 
Robison-Cox, Martell and Emrich, 2007).  It is also easy to 
fix the number of individuals at each level, rather than let it 
emerge by promoting a fixed fraction of eligible individuals 
each year, and that would lead to simulations more like those 
of the corporate management study of Robison-Cox, Martell 
and Emrich (2007) than the merit-based promotions more 
typical in academia.  The consequences of other suggestions 
could also be explored, such as that women are less aggressive 
about seeking promotion, or are quicker to give up waiting for 
promotion, or more likely to leave or take time out for other 
reasons such as maternity leave, etc.  All these ideas could be 
tested explicitly within the presented framework.  

There are a number of further computational complexities 
that could relatively easily be incorporated into the simulation 
approach presented in this paper, that have previously been 
tested in simulations of Life History Evolution (Bullinaria, 
2009, 2010), such as allowing abilities and preferences that 
change with time, or having parameter value distributions 
rather than parameters fixed at particular values.  Hopefully, 
however, this short paper has been sufficient to demonstrate 
that the general framework proposed will allow all manner of 
additional factors to be explored in a more systematic manner 
than previously, in which the assumptions and simplifications 
are explicit, and the effects quantifiable.  It is inevitable that 
some readers will disagree with the particular assumptions 
and simplifications employed in the simulations presented 
here.  Hopefully progress can be made by other researchers 
using the approach to test the consequences of varying those 
assumptions and simplifications, and performing simulations 
more carefully matched to their own data and beliefs.  
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