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Abstract 
The effect that learning has on Life History Evolution has 
recently been studied using a series of Artificial Life 
simulations in which populations of competing individuals 
evolve to learn to perform well on simple abstract tasks.  Those 
simulations assumed that learning was achieved by identifying 
patterns in sets of training data, i.e. through direct experience.  
In practice, learning is not only by direct experience, but also 
by imitation of others.  Such imitative information transfer is 
now often formulated in terms of memes being passed between 
individuals, and it is clear that this is a substantial part of real 
learning processes.  This paper extends the previous study by 
incorporating imitation and memes to provide a more complete 
account of learning as a factor in Life History Evolution. 

Introduction 
Computational models based on neural networks that learn 
from a stream of experience (i.e. representative input-output 
samples) have provided good accounts of numerous aspects of 
human behaviour.  Extending those models to Artificial Life 
simulations of evolving populations of competing neural 
network based individuals can then lead to improved under-
standing of more general aspects of human development and 
“life history”, such as the periods of protection that parents 
offer their young and ages at first reproduction (Bullinaria, 
2009).  Those simulations elucidated the trade-off between 
learning quickly and learning well, and showed how evolution 
can balance the trade-off to result in the emergence of 
extended periods of parental protection during which learning 
could be completed slowly and effectively without the impact 
of fitness based natural selection pressures.  

The Bullinaria (2009) Life History Evolution study began 
by using a simple artificial neural network based system that 
allowed each individual to learn from a set of training 
patterns, and then moved on to study non-neural network 
abstractions of that kind of learning process, that were more 
computationally efficient for large scale evolutionary 
simulations.  What all those simulations assumed was that the 
learning was achieved by identifying patterns in relevant 
training data, i.e. through direct experience.  In practice, 
learning is not purely by direct experience, but also by 
imitation of learned performance of others.  Such information 
transfer can be formulated in terms of memes being passed 
between individuals (e.g., Brodie, 1996; Blackmore, 1999), 
and it is clear that this, in its most general form, is a large part 
of the human learning process, and maybe also of other 
animal species.  It is therefore important to incorporate 

imitation and memes into any complete account of learning as 
a factor in Life History Evolution.  As always, there will be 
trade-offs between the various costs involved (Stearns, 1989, 
1992).  In many ways, the relevant trade-offs are clear from a 
theoretical point of view, but the interactions are complex and 
highly dependent on the associated parameters.  It is only by 
running comprehensive series of simulations that the effect of 
the various parameter values becomes apparent.  

Already Higgs (2000) has simulated the evolution of 
learning by imitation, but that study didn’t consider how that 
learning might interact with more traditional neural learning 
by direct experience, and it is not immediately obvious how 
best to bring those different forms of learning together.  One 
of the key results of Bullinaria (2009) was that it is possible to 
abstract out almost all the details of the neural learning, and 
still be left with a system that resulted in the evolution of the 
same life history properties.  Although it was not the intention 
at the time, that abstraction process also provides a relatively 
straightforward way of incorporating imitative learning into 
the same system.  Therefore, the aim of this paper is to 
introduce a parameterized account of memes and imitation 
into the approach of Bullinaria (2009), and begin to explore 
the effect that imitation has on the various life history and 
human development factors.  

In the remainder of this paper, the underlying Artificial Life 
framework is first described, and then the details are provided 
about how the direct learning and imitation processes can be 
modelled efficiently.  This is followed by a presentation of the 
results from a representative series of simulations designed to 
test and explore many of the key relevant issues.  The paper 
ends with some discussion and conclusions. 

The Artificial Life Framework 
The simulation approach involves evolving populations of 
individuals, each specified by a set of innate parameters, that 
must learn to perform well on some abstract task.  The fitness 
of each individual at each stage will simply be how well it has 
so far learned the given task.  Forcing the individuals to 
compete to survive and procreate, according to their relative 
fitness, results in the emergence of populations of increasing 
ability.  Moreover, to compete effectively in a population 
consisting of individuals of all ages, each individual must not 
only learn how to perform well, but must also be able to learn 
quickly how to achieve that good performance, or at least 
quickly enough that it can survive after its parents have 
withdrawn their protection.  This leads to the evolution of 



riskier learning strategies than over-simplified “generational” 
approaches that involve weaker selection pressures and do not 
match real environments so well (Bullinaria, 2007a).  

In all the simulations, a fixed population size is maintained 
(that is consistent with fixed total food resources available to 
support the population) by replacing the individuals that have 
died by children of the most fit individuals.  Deaths occur by 
losing a fitness comparison “fight” against other individuals, 
or randomly due to old age beyond a natural life-span (set 
here to be around twice the time typically taken to learn the 
simulated task, namely 30 simulated years).  The children are 
generated by cross-over and mutation from two parents 
chosen each simulated year by pair-wise fitness comparisons 
of the eligible individuals.  This is implemented by having 
each child inherit innate parameters chosen randomly from the 
corresponding ranges spanned by its two parents, plus a 
random mutation (from a Gaussian distribution) that gives it a 
significant chance of falling outside that range.  Although 
these details are clearly over-simplifications of real animal 
populations, they constitute a manageable approximation of 
all the key processes, and have proved effective in numerous 
previous studies (e.g., Bullinaria, 2007a,b, 2009).  

The Bullinaria (2009) study began with a learning process 
based on standard fully connected Multi-Layer Perceptron 
neural networks with one hidden layer, sigmoidal processing 
units, and training by gradient descent using the cross-entropy 
error function on simple classification/categorization tasks.  
The main life history factor explored in that study was the 
protection of children by their parents until they had reached a 
certain age, so they could not be killed by competitors before 
then.  That added an implicit cost to the parents in that the 
more they protected their children, the more likely they were 
to die themselves through competition.  Simulations that 
evolved the protection period, as well as all the neural 
learning parameters, established that clear learning advantages 
and better adult performances were possible if children 
received longer periods of parental protection, but only if the 
children were not allowed to reproduce during their period of 
protection.  If procreation was not prevented in that way, the 
competition to reproduce led to learning strategies that result 
in worse adult performance.  When procreation is prevented 

while protected, a compromise protection period evolves that 
balances the improved learning performance against the 
reduced period for procreation.  It was also shown that the 
evolved protection period increases with life-span, rather than 
remaining at a fixed duration determined by the learning task 
complexity, illustrating the trade-off involved and confirming 
the importance of learning well.  

Abstracting the Neural Learning Process 
An important result of Bullinaria (2009) was that it is possible 
to approximate the full neural network learning process by a 
single performance level that varies as a simple parameterized 
function of age, and still end up with qualitatively the same 
Life History Evolution results.  The simplest stochastic 
approximation would be to have each individual’s learning 
performance (i.e. fitness) rise approximately linearly with age 
from 0 up to 100% in steps drawn randomly each year from 
the range [0, 2δ].  Simulations using different learning rates δ 
then show that the population mean performance falls almost 
linearly with the Expected Learning Time (ELT), i.e. 100/δ, 
and the evolved protection period rises approximately linearly 
with 100/δ, but peaks near the point at which individuals start 
dying of old age.  Predictably, the best mean performance is 
achieved with very high learning rates δ, for which all 
individuals reach perfect performance before their first round 
of competition to survive or procreate at the end of their first 
year.  Consequently, if the learning rate δ is evolved along 
with the protection period, it quickly achieves very high 
levels, and the protection period goes to zero.  Of course, with 
real neural networks one cannot just keep on increasing the 
learning rate and expect the learning time to decrease with it.  
Eventually, at some task dependent point, the approximation 
to true gradient descent breaks down, and the learning 
performance deteriorates.  In that case, the evolutionary 
process will find the best values for the learning parameters, 
and having slower learning with longer protection periods 
does consistently emerge to provide a clear advantage.  

A better approximation to the full neural learning process, 
that has faster learning leading to riskier learning strategies 
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Figure 1:  The mean evolved performance levels and protection periods as a function of the ELT 100/δ when the linear individual 
performance improvement with age stops with probability ρδ at a random cost in the range [0,100], for ρ ∈ {0, 0.02, 0.05, 0.1}. 
 



which increasingly lead to persistent poor performance, is 
achieved by simply having the learning process stop at some 
random point in the performance range [0, 100] with a 
probability ρδ that increases linearly with both the learning 
rate δ and an associated “task difficulty” parameter ρ.  The 
left graph of Figure 1 shows how the mean performance then 
depends on the ELT 100/δ for four representative values of ρ.  
The higher ρ is, the lower the value of δ at which significant 
deviations from the earlier ρ = 0 case arise.  The right graph 
shows that the relation between the evolved protection period 
and 100/δ is not much affected by the size of ρ.  

The performance plot shows a clear maximum for each 
value of ρ, and successful evolutionary processes will result in 
the emergence of the corresponding optimal learning rates δ 
with their associated non-zero protection periods.  The left 
graph of Figure 2 shows the mean Expected Learning Times 
100/δ and protection periods that actually emerge through 
evolution as a function of the parameter ρ.  As ρ increases, the 
best possible learning time 100/δ also increases, and the best 
protection period follows suit.  The evolved protection period 
is always slightly longer than the ELT 100/δ.  This is because 
of the stochastic nature of the learning process and the fact 
that the mutations lead to distributions of learning rates and 
protection periods, and the obvious advantage of protection 
periods being long enough to accommodate a reasonable 
number of individuals that are slower than average.  

The parameter ρ is seen to act as an abstract measure of 
learning difficulty, and can be regarded as an approximate 
representation of the difficulty the neural network learning 
algorithm has with its given task.  Although this is a rough 
approximation to reality, it does have the required properties.  
Relatively easy tasks correspond to low ρ, are learned quickly, 
and have short associated protection periods.  Harder, or more 
complex, tasks correspond to higher values of ρ, take longer 
to learn, and benefit from longer protection periods.  The 
individual performance levels that emerge in the abstracted 
learning models were compared directly by Bullinaria (2009) 
with those arising from the full evolutionary neural network 
simulations, and a good qualitative correspondence was found 
for ρ = 0.04.  The right graph of Figure 2 shows the median 
performance levels as a function of age for this case.  The 

mean evolved ELT 100/δ is around 10 years and the mean 
evolved protection period is around 14 years.  As for the full 
neural simulations, the results arising with evolved protection 
period (Ev) were compared with three fixed protection periods 
(1, 10, 20).  The linear learning approximation and uniform 
distribution of residual errors are rough approximations of the 
real neural learning processes, but the broad pattern of results 
is found to be the same:  Longer protection periods allow 
slower learning and result in better adult performance, but not 
allowing procreation while being protected prevents the 
evolved protection periods from becoming excessively long.  
The effects of changing the age at onset of “old age”, and of 
allowing procreation while protected, are also found to be in 
line with those of the full evolving neural networks.  

There certainly remains much scope for more accurate 
parameterizations for specific real learning processes, as 
discussed by Bullinaria (2009), but the current set-up will 
suffice for the preliminary investigation of memes here.   

Incorporating Imitative Learning 
The main aim of the abstracted neural learning process was to 
improve the computational efficiency, and hence allow more 
detailed Life History factors to be simulated, but it also 
renders it feasible and fairly straightforward to incorporate 
learning by imitation into the same performance function.  

The basic idea is that it will often be more efficient to 
imitate the successful behaviour of another individual than it 
is to learn it from direct experience.  One can think of the 
transmission of behavioral practices or cultural ideas between 
individuals, and those memes will replicate and respond to 
natural selection pressures in a manner analogous to genes 
(Dawkins, 1976; Brodie, 1996; Blackmore, 1999).  It seems 
likely that humans have evolved to learn by imitation as well 
as direct experience across a wide variety of tasks (e.g., 
Richerson and Boyd, 1992; Offerman  and Sonnemans, 1998), 
though other species appear to imitate to a much lesser extent 
(e.g., Byrne and Russon, 1998; Blackmore, 1999; Zentall, 
2001).  There has been considerable recent interest in this idea 
across a range of disciplines (e.g., Hurley and Chater, 2005; 
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Figure 2:  The mean evolved ELT 100/δ and protection period as a function of learning task difficulty parameter ρ (left), and the 
median learning performance as a function of age for the evolved and three other protection periods with ρ = 0.04 (right).   
 



Nehaniv and Dautenhahn, 2009).  The thinking here is that 
Artificial Life simulations will be best placed to explore this 
issue in the context of other Life History traits.  

Some interesting preliminary work has already been carried 
out.  Belew (1990) and Best (1999) have introduced imitation 
based cultural factors into the Hinton and Nowlan (1987) 
model of learning guiding evolution, but that work is far 
removed from the neural inspired learning relevant to the life 
history factors of relevance here.  Borenstein and Ruppin 
(2003) address many of the limitations of those earlier studies, 
and do incorporate neural learning mechanisms, but they 
actually prevent cultural evolution by not allowing meme 
transmission between generations and only allowing innate 
behaviours to be imitated.  

The study of Higgs (2000) comes closest to exploring the 
life history issues of interest here.  That paper considered the 
evolution of populations of individuals that may invent and 
imitate memes, and investigated a range of factors that affect 
how the imitation rates, fitness levels, and number of memes 
evolve.  The key finding was that imitative ability does 
consistently emerge under a range of conditions, even when 
some memes have a negative effect on fitness, and/or there is 
an inherent cost in the ability to imitate.  In many ways it is 
obvious that if there exist memes with a range of positive and 
negative effects on fitness, then not imitating will leave the 
fitness at some baseline, whilst imitation will result in a range 
of fitness levels above and below that baseline.  Selection on 
the basis of fitness will then favour those individuals that have 
imitated the good memes, and hence favour imitative ability.  
Moreover, since it favours individuals that have acquired and 
can pass on those good memes, the good memes will tend to 
propagate at the expense of the bad memes.  Memes acting 
together (i.e. memeplexes), the interplay of genetic and 
cultural fitness, and the interaction of genetic and mimetic 
replicators, all complicate this simple picture (e.g., Brodie, 
1996; Blackmore, 1999; Best 1999), but these are all things 
that can be incorporated into future simulations. 

The main question this paper aims to address is: how can 
the Life History Evolution approach of Bullinaria (2009) be 
extended in a way that enables these issues to be studied in 
conjunction with direct lifetime learning processes?  

Simulating Memes and Imitation 
For the extraction of reliable conclusions from Artificial Life 
simulations it is important to avoid confounding factors, so to 
explore general ideas it is usually wise to keep the models 
much simpler than when the aim is to model particular real 
life scenarios.  Moreover, it is important to parameterize the 
models (e.g., like introducing the parameter ρ above) so that 
they remain relevant to a range of species, tasks, etc. and 
allow comparisons between them.  The aim here is to develop 
such a parameterized framework that is general enough to 
cover learning from others in the most general sense, that 
includes (but is not limited to) simple imitation. 

Unfortunately, the details of the Higgs (2000) study do not 
match with the current aims.  In particular, it did not consider 
the details of any of the processes taking place during the 
individuals’ lifetimes, and it used non-overlapping generations 
which means a total absence of the competition between 
individuals of different ages that underlies so many of the 
issues of interest here.  Other factors simply complicate the 
analysis unnecessarily, such as using Gaussian distributions 
for the meme fitnesses and mutations, the non-linear relation 
between learning ability and probability of imitation, and the 
unbounded number of memes that can be invented.  So, 
instead of following the approach of Higgs (2000), the 
approach of Bullinaria (2009) will be extended in a minimal 
computationally efficient manner to include the key concepts 
of memes and their imitation. 

The starting point is to assume that there exist a set of M 
memes {mj : j = 1,…,M} and that each individual i at each 
stage of its life will have acquired some subset of them to be 
stored in their brain of size Bi.  There is no need to specify 
exactly what the memes represent, nor worry about the details 
of the imitation process.  It will also be assumed that all the 
memes are of equal complexity and imitability, though they 
may contribute unequally to fitness of the individuals that 
possess then.  To begin with, the individuals’ baseline fitness 
will be 0, and half the memes will be deemed good memes 
that increase this by 1, and the other half will be bad memes 
that decrease it by 1.  So each individual i can potentially 
increase its fitness during its lifetime from 0 up to Bi.   
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Figure 3:  The evolution of imitability (left), and the change in average numbers of good and bad memes known by individuals 
throughout evolution (right), for 16 runs of the basic imitation-only simulation with limited brain sizes.  
 



The imitative ability αi of all individuals i in the initial 
population will be zero, but the mutations and crossovers as 
described above enable it to evolve from zero up to a 
maximum of 1 if that proves beneficial.  Then during each 
simulated year, each individual can acquire up to αiφBi memes 
from other individuals, where φ is a parameter that specifies 
the maximum rate at which memes can be copied.  To inject 
memes into the populations with minimal disruption to the 
imitative process, each year one randomly chosen individual 
acquires one randomly chosen meme with probability r if its 
brain is not already full.  Figure 3 shows what happens if 
M = 400, Bi = 100, φ = 0.1 and r = 0.01, with just the 
imitabilities αi allowed to evolve.  The tournament based 
selection of parents, deaths and copied individuals give the 
good memes an advantage over bad memes, so the number of 
bad memes rises more slowly than the good memes, and when 
the number of known memes reaches the level that brains 
regularly reach full capacity (~20,000 years), the number of 
bad memes begins to fall and eventually becomes negligible 
(~150,000 years).  There is a clear advantage to acquiring 
memes throughout, and so the imitability quickly rises to near 
1.  The behaviour during the lifetime of a typical evolved 
individual is a simple linear acquisition of memes over the 
first 1/φ = 10 years, at which point the brain reaches full 
capacity and maximum performance is achieved.  Children are 
then produced until death due to old age.  Most deaths due to 
competition occur during the meme acquisition period.   

There are interesting dependencies on who exactly is 
imitated to acquire memes.  If memes are copied from random 
individuals, there is still enough selection pressure to eradicate 
the bad memes, but it takes about twice as long (~300,000 
years).  If each individual first acquires memes from their own 
parents, before imitating random others, the number of bad 
memes disappears more quickly (~130,000 years).  If parents 
are imitated before fitness selected others, the bad memes go 
even more quickly (~120,000 years).  Since parents have 
already gone through fitness selection to become parents, and 
are also older and more experienced, they are a better source 
of memes than other fitness selected individuals.  In fact, if 
individuals only copy from their parents, significant numbers 
of bad memes never build up at any stages of evolution.   

Another factor that affects the results is the basing of who 
to imitate on cultural fitness (Higgs, 2000).  In this case, each 
meme has a cultural fitness that is not correlated with its 
standard (biological) fitness, and individuals are chosen for 
imitation according to the total cultural fitness they have 
acquired.  As Figure 4 shows, this allows memes of high 
cultural fitness to persist in the population, even if they are 
actually bad memes.  This is independent of what contributes 
to the cultural fitness of those bad memes.  Obviously, there 
are numerous related factors, such as cognitive dissonance 
(Cooper, 2007) and memes associating into memeplexes 
(Blackmore, 1999), that will increase or decrease this effect to 
varying degrees, and these are more issues that may be worth 
attempting to incorporate into future simulations.  

The effect of copying fidelity also needs consideration.  
This can easily be approximated by having a fraction 1–f of 
good memes incorrectly copied and thereby transformed into 
bad memes.  As the fidelity f is reduced from 1, the pattern 
changes from that like Figure 3 but with increasing times 
needed to eradicate the bad memes, to something like Figure 4 
with persistent levels of bad memes.  

Finally, it is important to understand how the results 
depend on the relation between the total number of memes 
and the brain capacity.  For M = 200, Bi = 200 and everything 
else the same, the simulation results of Figure 3 take on the 
rather different pattern seen in Figure 5.  Now all individuals 
can acquire all memes, and it proves much more difficult to 
separate the good from the bad so that selection pressures can 
act.  In this case evolution ends up with only slightly more 
good memes than bad, and there is little pressure towards high 
levels of imitability.  Interestingly though, the strategy of only 
imitating ones own parents does manage to prevent the build-
up of bad memes in this case too.  

A central recurring feature of the Higgs (2000) study was a 
“mimetic transition” at which there is a dramatic rise in 
imitative ability and number of memes, and it was shown how 
numerous factors affected the timing of that transition.  In the 
current framework, that transition virtually always happens 
right at the start of the evolutionary process.  

There is certainly much more to memes and imitation than 
has been introduced here (e.g., Brodie, 1996; Blackmore, 
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Figure 4:  The evolution of imitability (left), and average numbers of good and bad memes known by individuals (right), for 16 runs 
of imitation-only simulations with limited brain sizes and cultural fitness based imitation selection.  



1999), but the framework as described above already includes 
all the key ideas necessary to make progress.   

Simulating Direct Learning 
Having formulated the key mimetic factors, the direct lifetime 
learning factors of Bullinaria (2009) can now be reinstated.  
The natural way to do this in terms of memes is to have δiψBi 
random memes learned each year, where δi  is an evolvable 
learning rate, and ψ is an intrinsic measure of learning 
difficulty.  The time to learn to brain capacity is then 1/δiψ, 
and for ψ = 0.01 the expected learning time matches that of 
the Bullinaria (2009) simulations.  The learning difficulty 
parameter ρ  that prevents the evolution of unrealistically high 
learning rates can be implemented easily here by learning a 
bad meme rather than a good meme with probability ρδ.  
Then the evolved learning rates balance the trade-off between 
learning quickly and having too many fitness reducing bad 
memes, with results equivalent to the full neural network 
simulations of Bullinaria (2009).  

Life History Simulation Results 
The simulations become even more interesting when the 
imitation and direct learning occur together and interact with 
life history traits such as protection periods.  But, before doing 
that, there are a few more important details that need to be 
added to render the simulations reasonably realistic.  

First, it is possible for an individual to acquire both good 
and bad “versions” of the same meme via different routes.  
The resolution of meme inconsistencies in reality is known to 
be a complex issue (Cooper, 2007), but a convenient approach 
to start with here is to have the good and bad memes come in 
pairs that simply cancel each other out if they occur together.  
In this way, a bad meme arising from direct learning can be 
removed if the corresponding good meme is copied from 
another individual.  Similarly, a bad meme arising from poor 
copying fidelity can be removed by later acquiring the 
corresponding good meme by direct learning or by copying 
from a different individual.  

Second, in reality, the rate of meme acquisition is unlikely 
to be as constant as in the processes described above.  Instead, 
more realistic results are produced by a stochastic version, 
where each usage of the parameters αi and δI are replaced by 
random numbers from the respective ranges [0, 2αi] and 
[0, 2δi], like in the Bullinaria (2009) study.  

Figure 6 shows the evolution of the key parameters and 
resultant meme counts when M = 400, Bi = 100, φ = 0.1, 
ψ = 0.01, r = 0.01, f = 0.9 and ρ = 0.001.  In this case, both 
copying and direct learning contribute to the learning process, 
and bad memes are kept to very low levels.  The protection 
period settles to slightly above the typical learning time as in 
the full neural simulations of Figure 2.   

The implementational details obviously affect exactly what 
emerges from the simulations, and it is those differences that 
reflect the wide range of life history patterns for the different 
species that have emerged from biological evolution.  Varying 
the details and parameters allows a systematic exploration of 
the trade-offs and interactions that lead to specific traits.  A 
few simple examples will now illustrate the kind of factors 
that can be investigated within this framework.  

The issue of whether to allow procreation while protected 
produced interesting results in the direct learning study of 
Bullinaria (2009).  In that case, if procreation was allowed 
while protected, the protection periods rose so that there were 
only deaths due to old age and no deaths by competition, and 
the selection pressure to learn fast to procreate early resulted 
in higher learning rates that led to poorer adult performance.  
This no longer happens in the current meme based framework.  
Since the errors arising from faster learning can now be 
corrected by copying (or being taught), such fast learning will 
emerge without a deterioration of the final adult performance.  
Increased protection periods again remove the worry of early 
death due to competition, so if some unlucky individuals are 
slow in correcting their direct learning errors, that is 
compensated overall by the faster early learning in others.  
The balance between the two forms of learning, parameterized 
here by φ, ψ, f and ρ, will determine exactly what emerges, 
and the way forward would be to attempt to understand 
species specific differences in terms of variations in such 
parameter values.  
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Figure 5:  The evolution of imitability (left), and average numbers of good and bad memes known by individuals (right), for 16 runs 
of the basic imitation-only simulation with brains large enough to accommodate all known memes.  



The copying fidelity, parameterized by f, has a particularly 
large effect on what emerges.  If it is raised from the 0.9 of 
Figure 6 up to 1.0, so that all the copying is exact, evolution 
results in perfect performance being achieved more quickly 
and more reliably.  One might predict that the evolved direct 
learning rates δ will then decrease to enable more reliable 
memes for copying, but they actually increase from 12 to 19, 
because copying can now more effectively correct any direct 
learning errors.  Overall, the evolved protection period can be 
reduced from 10.0 to 7.6 years to enable a longer procreation 
period.  The trade-offs are such that fidelity differences affect 
what emerges in different ways depending on the values of the 
other parameters.  This again illustrates the need for a flexible 
modeling framework to explore such interactions.  

If the copying fidelity is very low, a high imitative ability α 
never evolves because it introduces too many bad memes into 
the population, and one ends up with direct learning only, as 
appears to be the case for most animal species apart from 
humans.  Also, if mechanisms are not available to remove bad 
memes, interesting changes in imitative ability can arise 
throughout evolution.  For example, Figure 7 shows one such 
case in which the number of bad memes repeatedly rises to 
such high levels that the best strategy is to stop copying until 
all the carriers have died, and then start again.   

The brain size is another crucial factor that can be evolved, 
and in the simulations described above it invariably grows to 
the maximum allowed.  Obviously, for real animals there are 
significant costs associated with having larger brains, and 
trading those costs against the improved performance that 
results from a bigger brain leads to particular brain sizes 
emerging (e.g., Blackmore, 1999; Striedter, 2005).  It actually 
proves easy to add such costs into the simulations to limit the 
brain sizes that emerge, but the cost implementations are not 
yet sophisticated enough that the models can provide reliable 
testable predictions about particular species.  

Discussion and Conclusions 
This paper has made the first steps in introducing imitative 
learning and memes into Artificial Life simulations of Life 
History Evolution.  The main contribution has been to present 
a flexible framework which allows a computationally efficient 
way of parameterizing and exploring any hypotheses in this 
field.  There are certainly numerous simplifications and 
approximations involved, which have been highlighted 
throughout, but the basic structures and ideas are in place, and 
they have already been shown to replicate the key results of 
earlier approaches and improve upon them.   
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Figure 6:  Evolution of the full imitation and direct learning system with copying fidelity f = 0.9 and ρ = 0.001: the average 
imitability α (top left), learning rate δ (top right), protection period (bottom left) and resultant meme counts (bottom right).  



Even this simplified framework can be used to investigate 
an enormous number of interactions and trade-offs.  This 
paper has only presented results from a small selection of 
simulations to illustrate the kinds of issues that can be 
explored.  Experiments studying further issues will be 
reported in a longer paper elsewhere.  The simulation results 
so far are in line with existing intuitions, which instills 
confidence that they can now be taken further with some 
reliability to explore issues for which our intuitions are not so 
clear and controversy remains.  

There are numerous aspects of the current set-up that could 
be improved further without too much effort.  One would be 
the refinement of the parameterization of direct learning, and 
the relation of that to different types of animal learning.  Some 
preliminary attempts involving more parameters and different 
distributions of good and bad memes have shown that they do 
indeed re-balance the trade-offs slightly, but no fundamentally 
different behaviours have yet emerged.  Specific details of the 
mechanisms for removing bad memes tend to have a more 
dramatic effect on the results, as Figure 7 shows.  Building in 
associations between good and bad memes and simulating the 
creation of memeplexes (Blackmore, 1999), and introducing 
related mechanisms for the resolution of cognitive dissonance 
(Shultz and Lepper, 1996; Cooper, 2007), are obvious avenues 
for future enhancement of the framework in that direction, but 
it is not clear what fundamentally new results might emerge 
from that.  More challenging future work will involve the 
incorporation into the existing framework of more realistic 
additional indirect performance costs related to biological 
factors (such as the cost of running a larger brain, or of 
providing parental protection, or of allowing copying, or of 
teaching), and better distinction between types of learned 
behaviour and related factors such as ease of copying.  
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Figure 7:  When bad memes (left) are allowed to build up, the evolvable imitative ability (right) can fall quickly to very low values 
so that the bad memes die out, and then return to the earlier high level until the problem arises again.  


