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1 Introduction

Although it may sometimes be sufficient to view a trained neural network as
a ‘black box’ that solves or performs a particular task, we would often like to
have some idea of what exactly the network is doing. It is clearly something of
a problem not to understand how a network operates when it has been designed
as a model of some cognitive function. It is equally problematic to have artificial
systems solving real world problems in ways that are not easily understandable
by their human creators. Such problems range from matters of legality (e.g. in
some countries it is illegal to refuse credit without giving a reason and ‘because
our neural network said so’ is not generally considered to be a good enough
reason) to matters of reliability (e.g. in safety critical applications, can we trust
a system whose working we do not fully understand?).

In this chapter we shall be concerned with analysing the internal represen-
tations that are learnt by simple feedforward networks and using the resultant
information to understand how the networks are operating. This will also allow
us to investigate how the networks are likely to respond to damage, which is im-
portant both from the point of view of neuropsychological modelling and for the
more practical problem of estimating the robustness of implemented real world
systems. A useful introduction to this area of study is provided by Hanson and
Burr (1990).

We shall begin by reviewing the traditional techniques of hierarchical cluster
analysis, principal component analysis, multi-dimensional scaling and discrim-
inant analysis and illustrate their use by investigating the internal represen-
tations learnt by a recent connectionist model of reading aloud. We shall see
that there are limitations to all these approaches and then show how simple
output weight projections may lead to a clearer picture of what is happening.
In the reading model, the learning trajectories of these projections may help us
understand reading development in children and the results of naming latency
experiments in adults. We shall then discuss contribution analysis and its use in
predicting the effect of various types of damage to the networks. In our reading
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model, studying the effects of network damage seems to provide insight into the
mechanisms underlying acquired surface dyslexia.

Before embarking on our general analysis of internal network representations,
we first describe the network model that we shall use to illustrate our analysis.
The NETtalk (Sejnowski and Rosenberg, 1987) model of reading aloud (i.e. text
to phoneme conversion) was one of the earliest applications made possible by
the re-invention of training techniques suitable for multi-layer neural networks
(Rumelhart et al., 1986). It has recently been shown (Bullinaria, 1994a, 1995a)
how this original NETtalk model can be modified to work without the need
for pre-processing of the training data to align the letters and phonemes prior
to training. This modified model not only has superior learning and general-
ization performance to earlier reading models trained on the same words (e.g.
Seidenberg and McClelland, 1989), but also has the advantage that it does not
require the use of complicated input and output representations. Consequently,
it has become feasible to analyse the internal representations of this model with
view to better understanding how it operates under normal conditions and after
damage.

Numerous possible variations of the original NETtalk model were discussed
in Bullinaria (1994a). We shall only be concerned here with a fairly standard ver-
sion consisting of a fully connected simple feedforward network with sigmoidal
activation functions and one hidden layer of 300 units (as shown in Figure 1).
The input layer consists of a window of 13 sets of units, each set having one unit
for each letter occurring in the training data (i.e. 26 for English). The output
layer consists of two sets of units, each set having one unit for each phoneme
occurring in the training data (i.e. 38 units). The network was trained using
back-propagation on a standard set of 2998 monosyllabic words with the cor-
responding pronunciations1. The input words slide through the input window,
starting with the first letter of the word at the central position of the window
and ending with the final letter of the word at the central position, with each
letter activating a single input unit. The output phonemes correspond to the
letter in the centre of the input window in the context of the other letters in
the input window. Usually the output consists of one phoneme and one phone-
mic null (e.g. ‘t’ → /t / in ‘hot’), occasionally it consists of two phonemes
(e.g. ‘x’ → /ks/ in ‘box’) and for silent letters we get two phonemic nulls (e.g.
‘e’ → / / in ‘cake’). The fact that we have three possibilities causes the so-
called alignment problem, because it is not obvious from individual words in the
training data how the letters and phonemes should line up. The advantage of
this model over the original NETtalk is that, rather than doing the alignment
by hand prior to training, a multi-target approach (Bullinaria, 1995a) allows
the network to learn the appropriate alignments during the training process.

1We use the phonemic notation and conventions and words of Seidenberg and McClelland
(1989) throughout this chapter. Apart from the standard consonants, this has: D = ‘th’ in
‘than’, T = ‘th’ in ‘thin’, S = ‘sh’ in ‘shot’, C = ‘ch’ in ‘chat’, N = ‘ng’ in ‘fang’, Z = ‘z’ in
‘azure’, a = ‘a’ in ‘hat’, A = ‘ai’ in ‘mail, e = ‘e’ in ‘met’, E = ‘ee’ in ‘deed’, i = ‘i’ in ‘hit’,
I = ‘i’ in ‘pint’, o = ‘o’ in ‘hot’, O = ‘oa’ in ‘goal’, ∧= ‘u’ in ‘hut’, U = ‘oo’ in ‘boot’, u = ‘oo’
in ‘book’, * = ‘aw’ in ‘saw’, W = ‘ow’ in ‘cow’.
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Figure 1: The NETtalk style model we shall use to illustrate our discussion.

Given a word such as ‘huge’ → /hyUdZ/, the network considers all possible
output target alignments (e.g./hy Ud Z /) and trains only on the one that
already gives the smallest total output activation error. Even if we start from
random weights, given a sufficiently representative training set, the sensible reg-
ular alignments will tend to over-power the others, so the network eventually
settles down to using only the optimal set of alignments (e.g. /hy U dZ /).
Once trained, this network achieves perfect performance on the training data
(including many irregular words) and 98.8% on a standard set of 166 non-words
used to test generalization. It also provides simulated reaction times that cor-
relate well with various naming latency experiments and allows several possible
accounts of developmental and acquired surface dyslexia. Most important for
current purposes, however, is that we have a simple network successfully trained
to perform a relatively complex mapping.

2 Analysis techniques

In the reading model, different regions of hidden unit activation space are se-
lected by the output weights to activate different output phonemes. The learn-
ing process consists of judiciously choosing these regions and mapping from
each central input letter to an appropriate region depending on the context
information (i.e. surrounding letters). Since the consistent weight changes cor-
responding to regularities will tend to reinforce, whereas others will tend to
cancel, the network tends to learn the most regular mapping possible and hence
we also get good generalization performance. This manifests itself here, and
in other multi-layer feed-forward networks, in the formation of well structured
internal representations, i.e. patterns of hidden unit activation. Each network
input pattern maps onto a particular point in hidden unit activation space and
by understanding how these points stand in relation to each other we can gain
an understanding of how the network is operating. In this section we shall criti-
cally review several techniques that have previously been employed to study the
internal representations learnt by connectionist systems and illustrate their use
with our reading model. We shall also look at some less traditional techniques
which appear to cast more light on what is happening.
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2.1 Hierarchical cluster cnalysis

One way to map out what is going on in hidden layer activation space is to
perform a Hierarchical Cluster Analysis (HCA) of the points corresponding to
each input pattern (e.g. Everitt, 1975). The basic idea of HCA is that we de-
fine some distance measure on the hidden layer activation space (such as simple
Euclidean distance) and then construct a hierarchy of clusters of points based
on that measure. If the network is operating efficiently, we can expect input-
output patterns to be more closely clustered when they are more related. This
approach was found to result in sensible clustering of the letter-to-phoneme cor-
respondences in the original NETtalk model (Sejnowski and Rosenberg, 1987)
and also of the lexical categories in a simple sentence prediction network (El-
man, 1990). We might therefore expect this approach to identify useful relations
in other situations where they might not be so obvious.

Rather than attempting to look at all the 12744 points representing the
training data of our reading model (given by 2998 words with an average of 4.25
letters per word), we begin by looking at the mean activations for each of the
main 65 letter to phoneme mappings. A simple Euclidean clustering results in
Figure 2 and we obtain a similar picture using an L1 norm. The overall pattern is
largely as one might expect: vowels together, silent letters together, consonants
together and so on down to the likes of /dZ/ sounds together; though there are
a few anomalies (such as ‘k’ → /k/ being grouped with the silent letters) that
we shall discuss later. It is also worth noting that the words are sometimes
initially clustered according to their input letters (e.g. the ‘a’ → /o/ instances
are clustered with the other ‘a’ instances rather than the ‘o’ → /o/ instances)
and sometimes according to their output phonemes (e.g. the ‘i’ and ‘y’ words
are clustered according to the output /i/ and /I/ sounds).

Such large scale clustering is interesting, but we also need to check that the
good clustering persists right down to the level of individual words. To illustrate
this, Figure 3 shows the clustering of a representative set of 72 instances of the
single vowel ‘i’ (and the words containing them). We see that there appears
to be a clear distinction between the long /I/ sound and the short /i/ sound.
However, a closer inspection shows that the irregular words (such as ‘give’ →
/giv/ and ‘pint’ → /pInt/) are clustered with their regular counterparts (‘gibe’
→ /dZIb/ and ‘tint’ → /tint/) rather than with the other words pronounced in
the same way. Also, we find whole sub-rules (e.g. ‘–ind’ → /–Ind/) apparently
in the wrong high level cluster. It seems that the HCA is representing the well
known linguistic rule that a final ‘e’ lengthens the preceding vowel, but it is not
picking up the fact that the network has also managed to learn the exceptions to
that rule. In many situations the whole object is for the network to identify any
regularities in the training data and to ignore the exceptions (that commonly
constitute ‘noise’), so HCA may well still be a useful tool in these circumstances,
but it gives a misleading picture of the networks’ performance.

Another potential problem we face is that some parts of the training data
may cluster better than others. Figure 4 shows the cluster plot for 68 instances
of the letters ‘o’ or ‘a’ in our reading model plus the relevant eight mean mapping
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Figure 2: HCA of the mean letter-phoneme points in hidden unit space.
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Figure 3: HCA of representative ‘i’ words in hidden unit space.
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Figure 4: HCA of representative ‘a’ and ‘o’ words and their letter-phoneme
means.

points from Figure 2. We have a clear distinction between the ‘o’ and ‘a’ words,
and the ‘a’ words split reasonably well into the /o/, /A/ and /a/ clusters with
the mean values fairly central to each cluster. The ‘o’ words, however, show
poor clustering with the means apparently closer to each other than they are to
the words they represent.

The above examples illustrate what the HCA can miss and consequently,
even when the clustering appears to make sense, we must be careful about what
conclusions we draw from such an analysis. Since the network itself doesn’t
make use of Euclidean (or other) distance measures on the hidden unit activation
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space, it is not surprising that HCA can sometimes produce slightly misleading
results. Indeed, all the inter-point distances are actually very similar in the
examples shown above (mean 4.0, s.d. 0.6 for Figure 2; mean 3.8, s.d. 0.8 for
Figure 3; mean 4.4, s.d. 0.9 for Figure 4), so clustering doesn’t make much sense
anyway. Given a large enough dimensional space, the points will tend to spread
themselves out as uniformly as they can. Reducing the number of hidden units
closer to the minimum number required to learn the mapping may help slightly,
but even if we train our reading network with only 30 hidden units we still find
the exception words falling in the wrong clusters.

Since the networks’ output weights operate by projecting out particular sub-
spaces of the hidden unit activation space, to get a better understanding of the
internal representations we really need to see more directly how the words are
positioned in the hidden unit activation space.

2.2 Principal component analysis

For the reading model we deliberately chose to use a large number of hidden
units (i.e. 300), about ten times as many as actually needed to learn the training
data. The reason for this was that we were particularly interested in modelling
the effects of brain damage and acquired dyslexia. To do this realistically we
needed a system that was fairly resilient and degraded gracefully when damaged.
This required a highly distributed internal representation for which the removal
of any single hidden unit or connection had very little effect on the network’s
performance.

We succeeded in this aim, but are now left facing the difficult problem of
visualising points in a 300 dimensional space. Even if we had used a more
minimal network, with only around 30 hidden units, we would still have far too
many dimensions to visualise easily. We clearly need to reduce the number of
dimensions to something more manageable, i.e. two or three. One conventional
way to do this is to use Principal Component Analysis (PCA). If {Piα : i =
1, . . . , d; α = 1, . . . , n} are the vector components of a set of n points in our d
dimensional hidden unit activation space and 〈Pi〉 denotes the mean Piα over
all values of α, then the standard covariance matrix Sij is defined by

Sij =
∑

α

(Piα − 〈Pi〉)(Pjα − 〈Pj〉) (1)

It then follows that, since Sij is symmetric, the matrix Λij of its eigenvectors
given by

∑

k

SjkΛki = λiΛji (2)

is orthogonal. This means that Λij can be used to perform a change of basis,
i.e. an axis rotation, as given by

PΛ

iα =
∑

j

Λ−1

ij Pjα (3)
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such that the covariance matrix is diagonalised as in

SΛ

il =
∑

j

∑

k

Λ−1

ij SjkΛkl = λiIil (4)

and the total variance is unchanged and given by

var(P ) = trace(S) = trace(ΛSΛΛ−1) = trace(SΛ) =
∑

i

λi (5)

The p new coordinates {P Λ

iα : i = 1, . . . , p; α = 1, . . . , n} corresponding to the
p largest eigenvalues λi are called the first p principal components and provide
the best possible account for the variance in p dimensions.

PCA thus provides a convenient procedure for dimensional reduction with
the minimum loss of information. We simply project our points onto the p
dimensional sub-space spanned by the first p eigenvectors of the covariance
matrix. This approach was used to good effect by Elman (1993) to analyse his
sentence processing network. We see in Figure 5 that the first two principal
components alone are able to separate the vowels, consonants and silent letters
in our reading model. However, at the level of individual words, we see in Figure
6 that many exception words (e.g. ‘give’) and sub-rules (e.g. the ‘–ind’ words)
still find themselves clustered incorrectly. The problem is that, in our network,
the variance is distributed over too many components (the first three normalized
eigenvalues for the full set of training data are 0.096, 0.078, 0.067). Moreover,
the situation is only slightly improved if our network has only 30 hidden units
(eigenvalues 0.174, 0.117, 0.086). Clearly, taking only the first two or three
components on their own is bound to give a very poor representation of what is
happening.

2.3 Multi-dimensional scaling

A useful non-metric approach to dimensional reduction is provided by Multi-
Dimensional Scaling (MDS). A gradient descent algorithm is used to adjust
iteratively the positions of the points in a low dimensional space until the rank
order of the inter-point distances corresponds as closely as possible to those in
the original space (Kruskal, 1964a, b; Shephard, 1962a, b, 1980; Young, 1987).
Since we can start this iterative procedure with the positions given by PCA, we
are guaranteed to end up with at least as good a representation of the inter-point
distances as provided by PCA on its own. Though in practice, since the pro-
cedure can settle into local minima rather than the optimal configuration, it is
usually sensible to start the procedure from a number of different configurations
and select the best final configuration.

For small numbers of points, MDS works quite well. The average phoneme
data of Figures 2 and 5 results in the two dimensional MDS plot shown in Figure
7. The rank correlation with distances in the original data is 0.82, compared
with 0.50 for a 1D plot, 0.88 for a 3D plot and 0.56 for the first two principal
components. In addition to the vowel, consonant and silent clusters evident

9



Figure 5: The first two principal components of the mean letter-phoneme posi-
tions.

in the PCA plot, a ‘ch,ph, sh,th’ cluster has separated itself as it did in the
HCA. We can not only now see more clearly how the points are clustered but
also better understand the anomalies in the HCA, e.g. why the ‘k-k’ point was
grouped with the silent letters. Figure 8 shows that we can also get good plots
for the individual words. We still have problems with the exception words and
sub-rules, but there is a stronger tendency for them to appear at the edges of
clusters as close as possible to the clusters of their regular counterparts. The
rank correlation with the original data here is now 0.90 compared with 0.83 for
the PCA. However, for larger numbers of points the correlations become weaker
and often words that we know from cluster analysis should be close together do
not appear together on the MDS plots. In these cases it is clearly dangerous
to make detailed predictions from MDS plots, since it is not clear which lost
information is responsible for the breakdown in correlation.
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Figure 6: The first two principal components of our typical word set.

2.4 Discriminant analysis

The problem with both PCA and MDS is that they fail to take into account
the fact that some hidden units are more important than others, i.e. they do
not take into account the network’s output weights. It is also becoming clear
that we cannot expect to represent reliably the whole of our network’s internal
representation in only two dimensions. What should be feasible and more use-
ful, however, is to plot a series of small useful subsets of the full representation
based on the knowledge that we already have about the networks operation.
For example, we could attempt to elucidate the network’s distinction between
the long /I/ and short /i/ sounds. We can do such a thing using Discriminant
Analysis, which is a general procedure for projecting onto sub-spaces that opti-
mise particular conditions (e.g. Devijner and Kittler, 1982). This approach, in
the form of Canonical Discriminant Analysis (CDA), was successfully applied by
Wiles and Ollila (1992) to study combinatorial structure in hidden unit space.
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Figure 7: A two dimensional MDS plot of the mean letter-phoneme positions.

We shall attempt to use it to identify the hidden unit sub-spaces responsible for
particular output patterns in our reading model.

If we know which of G groups each point in hidden unit space belongs to (e.g.
which output phoneme it corresponds to), we can partition the total covariance
matrix S = W + B into the within groups covariance given by

Wij =
∑

g

(

∑

α∈g

(Piα − 〈Pi〉g)(Pjα − 〈Pj〉g)

)

(6)

and the between groups covariance given by

Bij =
∑

g

ng(〈Pi〉g − 〈Pi〉)(〈Pj 〉g − 〈Pj〉) (7)

where the groups are labelled by g, contain ng points and have mean com-
ponents 〈Pi〉g . The aim of discriminant analysis is to find a low dimensional
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Figure 8: A two dimensional MDS plot of our typical word set.

subspace which best discriminates between the given groups. Since, roughly
speaking, the determinant of a covariance matrix is a measure of the dispersion,
a convenient fitness function to maximize is the ratio |B|/|S| since it is well
known (e.g. Healy, 1986) that this maximization can be achieved by solving the
eigenvalue problem for S−1B to give a matrix M which projects our points onto
a rank(B) ≤ G − 1 dimensional subspace. In this sub-space the points will be
clustered into groups with the maximum between group separations and mini-
mum within groups dispersion. Unlike with PCA, the projection directions are
not necessarily orthogonal, but still their eigenvalues provide a useful measure
of the importance of each direction.

Since we know that our network performs a similar clustering (e.g. Gallinari
et al., 1988; Webb and Lowe, 1990; Gallinari et al., 1991), it is tempting to
assume that this procedure will give a good representation of what is happening
in hidden unit space. Consider our long /I/ versus short /i/ case again. We
can separate the words into two groups and use CDA to obtain a projection
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vector in hidden unit space that best discriminates between the two ‘i’ sounds.
The quality of the discrimination will clearly depend on the number of data
points we use. If we have many less points than the number of hidden units,
then the discrimination is essentially perfect (B/S = 1.0000 for 160 points).
In fact, we can get equally good discrimination even if we assign the points
to groups at random (B/S = 1.0000). It is clear that this is not giving us
a good picture of the true internal representation. If we use all the points
in the training data (239 /I/’s and 272 /i/’s) we do better. We then obtain
B/S= 0.98 for the true groups and B/S = 0.61 for random groups and, as
we should expect, for random groups we fail to get good clusters at all and
have many overlaps. However, if we test this procedure on words or non-words
not in the training data, the projection vector fails to classify them properly
even when the network itself does. To define the projection more accurately
we clearly need many more data points, particularly for the borderline region
between the two groups. To this end a set of 14766 words and non-words of
the form ‘C1V C2’ and ‘C1V C2e’ were generated, where C1 was one of a set of
58 initial consonant clusters, V was one of the set {i,ia,ie,y} and C2 was one
of a set of 58 final consonant clusters. Using these, the CDA then gave us a
projection with B/S = 0.83, but there was now a large overlap between the
two groups: maxi = −0.15, mini = −0.38, maxI = −0.23, minI = −0.46 with
2454 /I/ words greater than mini and 3828 /i/ words less than maxI . Figure 9
illustrates the problem with a more manageable intermediate set of 942 words
and non-words. As usual, the exception words (e.g. ‘give’ and ‘pint’) are at the
forefront of the problems.

It is clear that standard CDA does not necessarily give us a good representa-
tion of the true internal representation. The problem is that, when the network
learns, it certainly maximizes the between group distances mini − maxI , but
it has no need to minimize the within group dispersions. This is simply be-
cause, for our non-linear networks, once the projections fall in the tails of the
output sigmoids, very large differences can make relatively little difference to
the networks’ actual outputs (cf.the networks discussed in Gallinari et al., 1988;
Webb and Lowe, 1990; Gallinari etal., 1991). One way we may attempt to get
round the limitations of standard discriminant analysis is to start with CDA
and then employ a simple iterative procedure to adjust the projection vectors
so that all the points are correctly classified. There are many ways we can do
this. Suppose, for example, Piα is a point in hidden unit activation space and
Vi is our projection vector, then the projection of each point is given by

Dα =
∑

i

ViPiα (8)

This projection can be increased or decreased by a standard gradient descent
adjustment of Vi given by

∆Vi = ±ε
∂Dα

∂Vi

= ±εPiα (9)

where ε is a small constant. If we keep ε sufficiently small and sum the ∆Vi
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Figure 9: The canonical discriminant components for the /i/-/I/ distinction.

over an appropriate subset of points (e.g. all the misclassified points) we can
iteratively decrease the overlap.

When this was done for our 14766 data points in the reading model it resulted
in the correct classifications with a reduced B/S = 0.73. Unfortunately this was
still not good enough. For a good representation, we would expect the borderline
cases in the projections to correspond to borderline output phonemes - in fact,
the correlation was very poor. Moreover, the same iterative procedure even
managed to find a projection vector that could classify the set of data points
into randomly assigned groups (B/S = 0.49).

Projection vectors provided by discriminant analysis are clearly not very
useful if they can be found for groupings that bear little or no relation to what
the network has actually learnt to do. Such spurious projections are possible
because the procedure can make use of any noise that results from having a large
number of extra hidden units that are not strictly necessary for performing the
mapping (about 270 in the case of our reading model). If our network has very
nearly the minimal number of hidden units (i.e. 30), the CDA still gives a
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projection vector that has the two groups overlapping (B/S = 0.75) and it is
still possible to adjust the vector to separate the groups (B/S = 0.69). However,
it is no longer possible to find a projection vector that correctly classifies the
random groups.

We can conclude, therefore, that in general standard CDA does not reliably
inform us how a network is operating. Using gradient descent procedures to find
projection vectors that separate the groups can also lead to misleading results.
The problem is that we can very easily end up with projection vectors that have
little to do with the actual network outputs. Networks that have many hidden
units more than actually required for the task in question will be particularly
susceptible to these problems. At least, by attempting to use the networks’
hidden unit activations to classify the points into random groups, it is possible
to get some estimate of the reliability of the projection vectors in particular
situations.

2.5 Output weight projections

For the simple one hidden layer architecture and localist output representation
of our reading model, it is actually very easy to find projection vectors that
correlate with the outputs. We can simply use the projections the network
itself has learnt - namely the output weights. If we project the hidden unit
activations using the output weights Wij and redefine the zero points using the
output thresholds θj , our projections are then simply the network outputs before
being passed through the sigmoid. We are guaranteed rank correlation. We thus
have a suitable projection vector for each phoneme and these 38 vectors actually
turn out to be nearly orthogonal (mean angle 84◦, s.d. 5◦). These projections
can then be viewed in pairs to examine the relationships between the clusters, or
any of the above techniques may be used to study interesting sub-spaces of this
38 dimensional space (e.g. the four dimensional /i/, /I/, /e/, /E/ subspace may
be studied to investigate the various pronunciations of ‘ie’). Figure 10 shows
the resultant discrimination for our /I/ and /i/ phonemes for our 300 hidden
unit network. Each point has a positive projection onto the line in hidden unit
space corresponding to that phoneme and a negative projection onto the lines
corresponding to all the other phonemes. Thus points corresponding to other
phonemes would appear in the bottom left quadrant.

The projection vector that we were attempting to find by discriminant anal-
ysis now corresponds to the /i/-/I/ diagonal in Figure 10 . We can easily see the
clear separation of the groups and the unrestricted within group dispersion that
really corresponds to what the network has learnt (B/S = 0.72). We can also
easily check the relation of these correct projection vectors to those provided
by the CDA and gradient descent group separation. For the 300 hidden unit
network the angles between the vectors are 113◦ and 63◦ respectively. For the
30 hidden unit case the corresponding angles are 24◦ and 3◦, which is consistent
with our intuition that we get more reliable results for networks with fewer spare
hidden units.

Plotting trajectories on graphs such as Figure 10 can help us understand how
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Figure 10: The 2D hidden unit sub-space corresponding to the /i/ and /I/
phonemes.

the final pattern of projections arises, as well as possible causes of developmen-
tal problems (such as developmental dyslexia) and how the network responds
to damage. Of course, the output weights and thresholds change during the
learning or damage process at the same time as the hidden unit patterns, so
whilst the following description is broadly correct, we should be careful not to
take it too literally.

If we begin training with small random initial weights, all hidden unit acti-
vation points start near coordinates Aj given by

Aj =
1

2

∑

i

Wij − θj (10)

They then each step towards their appropriate quadrant. There are several
effects that will determine the final position of each word presentation. First,
as is clear from our HCA and MDS plots, similar words will tend to follow
similar trajectories and end up in similar regions of hidden unit space. High
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frequency words of all types will tend to have had plenty of time to get well
into the right quadrant. The positions for the lower frequency words will be
more variable. Words containing no ambiguity will head directly to the correct
quadrants. Ambiguous phonemes in exception words and closely related regular
words (often referred to as regular inconsistent words) will be pulled towards
two (or more) different quadrants with strengths proportional to their relative
frequencies. Although the network eventually learns to use the context infor-
mation to resolve these ambiguities, these points will still be the last to cross
into the right segments and hence be the ones left closest to the axes. Strange
words (such as ‘sieve’), that have very rare spelling patterns, may also be left
near the axes depending on their word frequency. Such a pattern of learning is
in broad agreement with that found in children (Backman et al., 1984). Also,
the pattern of performance that will arise if there are problems in completing
the later stages of learning is consistent with developmental surface dyslexia in
children (Coltheart et al., 1993).

These effects are seen clearly in Figure 10 . The points (circled) nearest the
group border lines tend to be exception words (e.g. ‘pint’), regular inconsistents
(e.g. ‘hive’) and homographs (e.g. ‘wind’). The other points (arrowed) near
the zero projection lines correspond to border line cases in orthogonal directions
(e.g. ‘been’ is a borderline case in the /i/-/E/ plane) or orthographically strange
words (e.g. ‘sieve’). Similarly, Figure 11 shows the two dimensional sub-space
corresponding to the /i/ and /f/ phonemes with the /i/, /I/ and /f/ words
plotted. Not surprisingly, given the virtual absence of ambiguity between the
/i/ and /f/ phonemes, the groups are much further apart than the /i/ and /I/
phonemes were in Figure 10. We can also see how the /i/-/I/ distinction looks
from orthogonal directions.

It is often argued that there should be a correlation between network output
activation error scores and the corresponding reaction times in humans (Seiden-
berg and McClelland, 1989). This follows because, in the more realistic cascaded
approach to modelling reaction times (McClelland, 1979; Bullinaria, 1995b), the
rate of output activation build-up is proportional to the appropriate projection.
Thus, the closer each point falls to the axes of our projection graphs, the longer
the corresponding reaction time. We can therefore easily read off from our
graphs the model’s predictions for naming latency experiments: There will be
a basic frequency effect. High frequency words will not show a type effect, low
frequency exception words will be slower than regular inconsistent words which
will be slower than consistent regular words and strange words will also have an
increased latency effect. These predictions do turn out to be in broad agreement
with experiment (for a detailed discussion see Bullinaria, 1994a, 1995b).

The original reason for wanting to investigate our networks internal repre-
sentations was to gain insight into how various forms of acquired dyslexia may
occur in the model. Connectionist models that can deal with regular and excep-
tion words in a single system cast doubt on the traditional dual route models of
reading with their separate phonemic and lexical routes. However, a minimum
requirement for them to replace the dual route model completely is for them
to be able to exhibit both surface dyslexia (lost exceptions) and phonological
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Figure 11: The 2D hidden unit sub-space corresponding to the /i/ and /f/
phonemes.

dyslexia (lost non-words) when damaged appropriately (Coltheart et al., 1993).
A detailed study of six representative forms of network damage (Bullinaria,
1994b) showed that, for each form of damage where there was a significant type
effect (namely weight scaling, weight reduction, addition of noise to weights, re-
moval of random connections and removal of random hidden units), we always
find symptoms similar to surface dyslexia but never anything like phonological
dyslexia. In each case we increased the degree of damage from zero to a level
where the network failed to produce any correct outputs at all and patients
with varying degrees of dyslexia corresponded to particular intermediate stages
of this process.

How do we understand these results in terms of our projection plots? Since
we are primarily concerned here with the internal representations we shall illus-
trate the analysis for just one form of damage, namely weight scaling. It is this
form of damage in small networks that seems to give the most reliable indica-
tion of what is likely to occur in more realistic networks (Bullinaria and Chater,
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Figure 12: The effect of damage by weight scaling on our /i/-/I/ projections.

1995). We simply scale all the weights and thresholds by a constant scale factor
0 < γ < 1. The effect of decreasing γ is to flatten all the sigmoids and, since the
winning output phoneme is independent of the flatness of the output sigmoids,
all the effect can be seen at the hidden units. As the hidden unit sigmoids
are flattened, all the hidden unit activations tend to 0.5 and all the projections
head back to the Aj defined above. It turns out that all the Aj are large and
negative (mean -50.3, s.d. 10.2) so all the points drift more or less parallel to
the bottom left diagonal. We see this clearly in Figures 12 and 13. The flow
is fairly laminar, so the first points to cross the phoneme borders tend to be
those that started off nearest to the borders. Thus the errors are predominantly
on low frequency exceptions rather than regular words and the errors for small
amounts of damage tend to be regularisations. This is precisely the pattern of
errors commonly found in surface dyslexics. Given this clear understanding of
the effects of damage here we can be more confident in our claims about the
effects of damage more generally (Bullinaria and Chater, 1995).
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Figure 13: The effect of damage by weight scaling on our /i/-/f/ projections.

2.6 Contribution analysis

We have already mentioned briefly the important related questions of robustness
and scaleability, i.e. are our networks sufficiently robust to damage and are
our networks sufficiently large scale such that we can confidently extrapolate
their performance to larger networks. In this section we discuss Contribution
Analysis, which is a technique for analysing the importance of individual hidden
units in connectionist networks (Sanger, 1989).

In terms of our hidden unit activation Piα for input pattern α, the standard
network output activation can be written as in

Outjα = Sigmoid

(

∑

i

WijPiα − θj

)

(11)
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Hence the contribution of hidden unit i to output unit j can be defined by

Cijα = Sign

(

∑

i

WijPiα − θj

)

· WijPiα (12)

We introduce the Sign function to ensure that positive contributions always
enhance the accuracy of the output whether it be 0 or 1. Since the contribu-
tions Cijα take into account the output weights, we should expect them to be
more useful for analysing the network’s performance than the Piα themselves.
However, the extra index j means that we now have many times the number
of components to deal with and these clearly have to be reduced for visualiza-
tion purposes. Perhaps the most convenient and illuminating way to proceed is
simply to perform analyses of the form described above on the contributions for
particular output units or particular hidden units. Sanger (1989) originally illus-
trated the advantages of this approach using PCA on a simplified reading model
with one hidden layer. More recently, Shultze and Elman (1994) have shown
how it can also be used to analyse multi-layer networks with cross-connections
between hidden layers.

Another important use of contribution analysis, that we have not already
discussed, is to examine the effect of single hidden units or connections on the
output of the network. If individual contributions, or small numbers of con-
tributions, have a significant effect on the networks outputs, then the network
will not be robust with respect to damage and simulations of network damage
will not necessarily scale up to more realistically sized networks. By defini-
tion, minimal networks will be highly dependent on individual contributions,
whereas much larger networks performing the same task are likely to form more
distributed internal representations with individual contributions insignificant
with respect to the sum of the others.

This aspect of network analysis was discussed more fully by Bullinaria and
Chater (1995) in the context of connectionist neuropsychology. The important
variable here is the ratio C of each contribution compared with the total effect
of all the contributions (including the threshold). If C > 1.0, then removing
that contribution will change the sign of the total and (assuming the network
has been trained to produce near binary outputs) drastically change the output.
Figure 14 shows (for a simple model described fully in Bullinaria and Chater,
1995) that the number of patterns affected by at least one such contribution
does indeed decrease from 100% for minimal networks to zero for larger networks
(e.g. with more than 150 hidden units in this case). If C > 1/N we run the
risk that the removal of N random connections will have a significant affect
on the outputs. Figure 14 also shows how the number of patterns affected by
contributions with C > 0.5 and C > 0.3 falls with the number of hidden units.
It is worrying that we need tens, if not hundreds, of times the minimal number
of hidden units to provide a reasonably robust and distributed network.
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Figure 14: The number of patterns dependent on significant individual contri-
butions.

3 Conclusions

We have surveyed a number of techniques for analysing the internal representa-
tions (i.e. patterns of hidden unit activation) of trained feedforward networks
and seen how they may all provide useful information concerning the operation
of what would otherwise be ‘black box’ systems. In doing so we have also iden-
tified a number of pitfalls in these approaches which may result in misleading
information about how the networks are performing.

We began by seeing how cluster analysis can indicate patterns of hidden unit
activation that agree well with how we might expect the network to operate, but
the mis-classification of exceptional items (that the network itself could handle
correctly) highlighted the fact that this approach was missing out on some cru-
cial aspects of the networks performance. We then turned to various techniques
for reducing the dimension of the hidden unit activation space to something that
could be visualised more directly. Firstly we used standard principal component
analysis to reduce the number of dimensions with minimal loss of information,
but found that for non-trivial problems two or three dimensions simply cannot
capture enough of the variance for more than the grossest features to be recog-
nised. We then saw how the non-metric approach of multi-dimensional scaling
could provide a slightly better picture of what was happening. The problem with
both these approaches is that neither takes account of the fact that some hidden
units are more important than others simply because they are connected with
different weights to the output layer. They consequently tend to mis-represent
what is happening for some items, the exceptional items in particular. To rem-
edy this problem we then looked for particular directions in the hidden unit
activation space that corresponded to known features of the network’s map-
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ping. Using discriminant analysis we were able to find projection vectors that
best discriminated between various classes of network outputs. However, careful
analysis showed that this approach could indicate modes of network operation
that did not actually correspond to how the network was really operating, and
that this difficulty was particularly problematic when the network employed
many more degrees of freedom than were necessary to perform the given task.
It was then noted that, for networks where it was possible, simple projections
onto sub-spaces defined by the output weights provide a much better picture
of the network’s internal representations than any of the preceding techniques.
This is unfortunate, since output weight projections will not be nearly so sim-
ple for systems that have more complicated output representations. We ended
with a brief discussion of contribution analysis and how it may be used with the
preceding techniques and how it can be used to investigate the robustness and
scaleability of trained networks.

Throughout this chapter we have used a simple reading model to illustrate
the various techniques. We have seen explicitly in this case how an analysis of the
internal representations can not only provide an insight into how the network
is operating, but can also lead to a better understanding of various human
developmental effects and reaction times. Similarly, analysing the network’s
response to damage can lead to better models of acquired dyslexia. It seems
likely that the simple techniques discussed in this chapter will be able to provide
equally useful insights into the operation of a wide range of other connectionist
systems.
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