
Introduction to Neural Networks : Revision Lectures

© John A. Bullinaria, 2004

1. Module Aims and Learning Outcomes

2. Biological and Artificial Neural Networks

3. Training Methods for Multi Layer Perceptrons

4. Bias + Variance and Improving Generalization

5. Applications of Multi-Layer Perceptrons

6. Radial Basis Function Networks

7. Committee Machines

8. Self Organizing Maps and Learning Vector Quantization

RL-2

L1 : Module Aims and Learning Outcomes

Aims

1. Introduce some of the fundamental techniques and principles of neural network systems.

2. Investigate some common models and their applications.

Learning Outcomes

1. Understand the relation between real brains and simple artificial neural network models.

2. Describe and explain the most common architectures and learning algorithms for Multi-

Layer Perceptrons, Radial-Basis Function Networks, Committee Machines, and

Kohonen Self-Organising Maps.

3. Explain the learning and generalisation aspects of neural network systems.

4. Demonstrate an understanding of the implementational issues for common neural

network systems.

5. Demonstrate an understanding of the practical considerations in applying neural

networks to real classification, recognition and approximation problems.

RL-3

L2 : Biological Neural Networks

nucleus

cell body

dendrites

axon

synapse

1. The majority of neurons encode their
outputs or activations as a series of
brief electical pulses (i.e. spikes or
action potentials).

2. Dendrites are the receptive zones that
receive activation from other neurons.

3. The cell body (soma) of the neuron’s
processes the incoming activations and
converts them into output activations.

4. Axons are transmission lines that send
activation to other neurons.

5. Synapses allow weighted transmission
of signals (using neurotransmitters)
between axons and dendrites to build
up large neural networks.

RL-4

L3 : Networks of McCulloch-Pitts Neurons

Artificial neurons have the same basic components as biological neurons. The simplest
ANNs consist of a set of McCulloch-Pitts neurons labelled by indices k, i, j and activation
flows between them via synapses with strengths wki, wij:

in out wki k ki= out ini ki
k

n

i= −
=

∑sgn()
1

θ in out wij i ij=

inni

∑

in1i

in2i
outi

wij

θi

inij

neuron i neuron j
synapse ij

RL-5

Implementation of Simple Logic Gates

We have inputs ini and output out = sgn(w1 in1 + w2 in2 – θ) and need to solve for w1 and θ :

AND

AND
in1 in2 out
0 0 0
0 1 0
1 0 0
1 1 1

XOR

Solutions only exist for linearly separable problems, but since the simple gates (AND, OR,

NOT) can be linked together to solve arbitrarily complex mappings, they are very powerful.

w1 0 + w2 0 – θ < 0
w1 0 + w2 1 – θ < 0
w1 1 + w2 0 – θ < 0
w1 1 + w2 1 – θ > 0

θθθθ >>>> 0000 , w1 , w2 < θθθθ ,,,, w1 + w2 >>>> θθθθ

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out
0 0 0
0 1 1
1 0 1
1 1 0

1.5

1 1

?

? ?

w1 0 + w2 0 – θ < 0
w1 0 + w2 1 – θ > 0
w1 1 + w2 0 – θ > 0
w1 1 + w2 1 – θ < 0

θθθθ >>>> 0000 , w1 , w2 > θθθθ ,,,, w1 + w2 <<<< θθθθ

RL-6

Building an Artificial Neural Network

Using artificial neural networks to solve real problems is a multi-stage process:

1. Understand and specify the problem in terms of inputs and required outputs.

2. Take the simplest form of network that might be able to solve the problem.

3. Try to find appropriate connection weights and neuron thresholds so that the network

produces appropriate outputs for each input in its training data.

4. Test the network on its training data, and also on new (validation/testing) data.

5. If the network doesn’t perform well enough, go back to stage 3 and work harder.

6. If the network still doesn’t perform well enough, go back to stage 2 and work harder.

7. If the network still doesn’t perform well enough, go back to stage 1 and work harder.

8. Problem solved – move on to next problem.

After training, the network is usually expected to generalize well, i.e. produce appropriate

outputs for test patterns it has never seen before.

RL-7

L4 : The Perceptron and the Perceptron Learning Rule

An arrangement of one input layer of activations feeding forward to one output layer of

McCulloch-Pitts neurons is known as a simple Perceptron:

The Perceptron Learning Rule iteratively shifts around the weights w ij and hence the

decision boundaries to give the target outputs for each input. If the problem is linearly

separable, the required weights will be found in a finite number of iterations.

wij

θ1

θ2

θm

1

2

n

1

2

m

i j Network Activations:

out in wj i
i

n

ij j= −
=
∑sgn()

1

θ

Perceptron Learning Rule:

w t w t w tij ij ij() () ()+ = +1 ∆

∆w targ out inij j j i= −η.().

RL-8

L5 : Learning by Gradient Descent Error Minimisation

The Perceptron learning rule is an algorithm that adjusts the network weights wij to minimise
the difference between the actual outputs outj and the target outputs targj

p. We can quantify
this difference by defining the Sum Squared Error function, summed over all output units j

and all training patterns p:

E w targ out inmn j
p

j i
p

jp

() ()= −()∑∑1
2

2

It is the general aim of network learning to minimise this error by adjusting the weights wmn.
Typically we make a series of small adjustments to the weights wmn → wmn + ∆wmn until the

error E(wmn) is ‘small enough’. We can determine which direction to change the weights in
by looking at the gradients (i.e. partial derivatives) of E with respect to each weight wmn.
Then the gradient descent update equation (with positive learning rate η) is

∆w
E w

wkl
mn

kl

= −η ∂
∂
()

which can be applied iteratively to minimise the error.

RL-9

L6 : Practical Considerations for Gradient Descent Learning

There a number of important practical/implementational considerations that must be taken

into account when training neural networks:

1. Do we need to pre-process the training data? If so, how?

2. How may hidden units do we need?

3. Are some activation functions better than others?

4. How do we choose the initial weights from which we start the training?

5. Should we have different learning rates for the different layers?

6. How do we choose the learning rates?

7. Do we change the weights after each training pattern, or after the whole set?

8. How do we avoid flat spots in the error function?

9. How do we avoid local minima in the error function?

10. When do we stop training?

In general, the answers to these questions are highly problem dependent.

RL-10

L7 : Multi-Layer Perceptrons (MLPs)

To deal with non-linearly separable problems (such as XOR) we can use non-monotonic

activation functions. More conveniently, we can instead extend the simple Perceptron to a

Multi-Layer Perceptron, which includes a least one hidden layer of neurons with non-linear

activations functions f(x) (such as sigmoids):

Note that if the activation on the hidden layer were linear, the network would be equivalent to

a single layer network, and wouldn’t be able to cope with non-linearly separable problems.

ninputs

nhidden

noutputs

out ini i
()0 =

out f out wj i
i

ij
() () ()()1 0 1= ∑

out f out wk j
j

jk
() () ()()2 1 2= ∑

wij
()1

w jk
()2

RL-11

The Back-Propagation Learning Algorithm

By computing the necessary partial derivatives using the chain rule, we obtain the gradient

descent weight update equation for an N layer MLP:

∆w E w w delta outhl
n

jk
n

jk
n

l
n

p
h
n() () () () ()() .= − = ∑ −η∂ ∂ η 1

in which the error signal deltak
N()at the output layer N is simply the difference between the

target and actual outputs times the derivative of the output activation function:

delta targ out f out w targ out out outk
N

k k
N

j jk
N

j
k k

N
k

N
k

N() () () () () () (). . .= −() ′






= −() −()∑ 1 1

and these error signals propagate back to give the deltas at earlier layers n:

delta delta w f out w delta w out outk
n

k
n

lk
n

k
j
n

jk
n

j
k
n

lk
n

k
k
n

k
n() () () () () () () () ().= 





′






= 





−()+ + − + +∑ ∑ ∑1 1 1 1 1 1

This is the famous Back-Propagation learning algorithm for MLPs.

RL-12

Training a Two-Layer MLP Network

The procedure for training a two layer MLP is now quite straight-forward:

1. Take the set of training (input – output) patterns the network is required to learn

{ ini
p, outj

p : i = 1 … ninputs, j = 1 … noutputs, p = 1 … npatterns} .

2. Set up a network with ninputs input units fully connected to nhidden hidden units via

connections with weights wij
()1 , which in turn are fully connected to noutputs output

units via connections with weights w jk
()2 .

3. Generate random initial connection weights, e.g. from the range [–smwt, +smwt]

4. Select an appropriate error function E w jk
n()() and learning rate η.

5. Apply the gradient descent weight update equation ∆w E w wjk
n

jk
n

jk
n() () ()()= −η∂ ∂ to each

weight w jk
n() for each training pattern p. One set of updates of all the weights for all the

training patterns is called one epoch of training.

6. Repeat step 5 until the network error function is ‘small enough’.

The extension to networks with more hidden layers is straightforward.

RL-13

L8 : Improvements Over Back-Propagation

We can smooth out back-propagation updates by adding a momentum term α. ()()∆w thl
n −1 so

∆ ∆w t delta t out t w thl
n

l
n

p
h
n

hl
n() () () ()() (). () . ()= + −∑ −η α1 1 .

Another way to speed up learning is to compute good step sizes at each step of gradient

descent by doing a line search along the gradient direction to give the best step size(t), so

∆w t size t dir thl
n

hl
n() ()() (). ()=

There are efficient parabolic interpolation methods for doing the line searches.

A problem with using line searches on true gradient descent directions is that the subsequent

steps are orthogonal, and this can cause unnecessary zig-zagging through weight space. The

Conjugate Gradients learning algorithm computes better directions dir thl
n()() than true

gradients and then steps along them by amounts determined by line searches. This is

probably the best general purpose approach to MLP training.

RL-14

L9 : Bias and Variance

If we define the expectation or average operator EEEED which takes the ensemble average over

all possible training sets D, then some rather messy algebra allows us to show that:

EE EE
EE EE EE EE

D i i

D i i D i D i

y x net x W D

net x W D y x net x W D net x W D

[|] (, ,)

(, ,) [|] (, ,) (, ,)

−()[]
= []−() + − []()[]
=

2

2 2

 (bias) + (variance)2

This error function consists of two positive components:

 (bias)2 : the difference between the average network output EED inet x W D[(, ,)] and the
regression function g x y xi i() [|]=EE . This can be viewed as the approximation error.

 (variance) : the variance of the approximating function net x W Di(, ,) over all the training
sets D. It represents the sensitivity of the results on the particular choice of data D.

In practice there will always be a trade-off to get the best generalization.

RL-15

L10 : Improving Generalization

For networks to generalize well they need to avoid both under-fitting of the training data (high

statistical bias) and over-fitting of the training data (high statistical variance).

There are a number of approaches to improving generalization – we can:

1. Arrange to have the optimum number of free parameters (independent connection

weights) in the network (e.g. by fixing the number of hidden units, or weight sharing).

2. Stop the gradient descent training process just before over-fitting starts.

3. Add a regularization term λΩ to the error function to smooth out the mappings that are

learnt (e.g. the regularizer Ω = − 1/2 Σ (wij)
2 which corresponds to weight decay).

4. Add noise (or jitter) to the training patterns to smooth out the data points.

We can use a validation set or cross-validation as a way of estimating the generalization

using only the available training data. This provides a way of optimizing any of the above

procedures (e.g. the regularization parameter λ) to improve generalization.

RL-16

L11: Applications of Multi-Layer Perceptrons

Neural network applications fall into two basic types:

Brain modelling The scientific goal of building models of how real brains work. This can

potentially help us understand the nature of human intelligence, formulate better

teaching strategies, or better remedial actions for brain damaged patients.

Artificial System Building The engineering goal of building efficient systems for real

world applications. This may make machines more powerful, relieve humans of

tedious tasks, and may even improve upon human performance.

We often use exactly the same networks and techniques for both. Frequently progress is

made when the two approaches are allowed to feed into each other. There are fundamental

differences though, e.g. the need for biological plausibility in brain modelling, and the need

for computational efficiency in artificial system building. Simple neural networks (MLPs) are

surprisingly effective for both. Brain models need to cover Development, Adult Performance,

and Brain Damage. Real world applications include: Data Compression, Time Series

Prediction, Speech Recognition, Pattern Recognition and Computer Vision.

RL-17

L12 : Radial Basis Function (RBF) Mappings

Consider a set of N data points in a multi-dimensional space with D dimensional inputs

x p
i
px i D= ={ : ,..., }1 and corresponding K dimensional target outputs t p

k
pt k K= ={ : ,..., }1 .

That output data will generally be generated by some underlying functions gk ()x plus random

noise. The goal here is to approximate the gk ()x with functions yk ()x of the form

y wk kj j
j

M

()x x= ()
=
∑ φ

0

There are good computational reasons to use Gaussian basis functions

φ
σj

j

j

() expx
x

= −
−









µµ
2

22

in which we have basis centres { }µµ j and widths { }σ j . If M = N we can use matrix inversion

techniques to perform exact interpolation. But this would be computationally inefficient and

not give good generalization. It is better to take a different approach with M << N.

RL-18

L13,14 : RBF Networks and Their Training

We can cast the RBF mapping into a form that looks like a neural network:

First the basis centres { }µµ j and widths { }σ j can be obtained by unsupervised methods (e.g.

centres at random training points with widths to match). The output weights { }wkj can then be

found analytically by solving a set of linear equations. This makes the training very quick,

with no difficult to optimise learning parameters, which is a major advantage over MLPs.

outputs yk

• • •

• • • • • •

inputs xi

basis functions φj(xi, µij, σj)

“weights” µij

weights wkj

1 D

1 Mj

• • •1 K

RL-19

L15 : Committee Machines

Committee machines are combinations of two or more neural networks that can be made to

perform better than individual networks. There are two major categories:

1. Static Structures

The outputs of several constituent networks (experts) are combined by a mechanism that

does not involve the input signal, hence the designation static. Examples include

• Ensemble averaging, where the constituent outputs are linearly combined.

• Boosting, where weak learners are combined to give a strong learner.

2. Dynamic structures

The input signal is directly involved in actuating the mechanism that integrates/combines

the constituent outputs, hence the designation dynamic. The main example is

• Mixtures of experts, where the constituent outputs are non-linearly combined by some

form of gating system (which may itself be a neural network).

RL-20

L16,17 : The Kohonen Self Organizing Map (SOM)

The SOM is an unsupervised training system based on competitive learning. The aim is to

learn a feature map from a spatially continuous input space, in which our input vectors live,

to a low dimensional spatially discrete output space formed by arranging the computational

neurons into a grid that is fully connected to all the input layer neurons.

This provides an approximation of the input space with dimensional reduction, topological

ordering, density matching, and feature selection.

Input layer

Computational layer

RL-21

Components of Self Organization

The self-organization process has four major components:

Initialization: All the connection weights are initialized with small random values.

Competition: For each input pattern, each output nodes compute their respective values of

a discriminant function which provides the basis for competition. Simple Euclidean

distance between the input vector and the weight vector for each output node is suitable.

The particular neuron with the smallest distance is declared the winner.

Cooperation: The winning neuron determines the spatial location of a topological

neighbourhood of excited neurons, thereby providing the basis for cooperation among

neighbouring neurons.

Adaptation: The excited neurons increase their individual values of the discriminant

function in relation to the input pattern through suitable adjustment to the associated

connection weights, such that the response of the winning neuron to the subsequent

application of a similar input pattern is enhanced.

RL-22

The SOM Algorithm

The self organising process is implemented in the SOM algorithm:

1. Initialization – Choose random values for the initial weight vectors wj.

2. Sampling – Draw a sample training input vector x from the input space.

3. Matching – Find the winning neuron I(x) that has weight vector closest to the input

vector, i.e. the minimum value of the discriminant function d x wj i jii

D
() ()x = −=∑ 2

1
.

4. Updating – Apply the weight update equation ∆w t T t x wji j I i ji= −η() () (), () x where

T t S tj I j I, () , ()() exp(/ ())x x= − 2 2σ is the Gaussian topological neighbourhood around the

winning node I(x) defined by the distance Sj I, ()x between nodes j and I(x) on the output

grid. σ(t) is the Gaussian’s width and η(t) is the learning rate, both of which generally

decrease with time (e.g. exponentially).

5. Continuation – keep returning to step 2 until the feature map stops changing.

RL-23

L18 : Learning Vector Quantization (LVQ)

The LVQ algorithm is a supervised process which starts from a trained SOM with input

vectors {x} and weights (i.e. Voronoi vectors) {wj}. The classification labels of the inputs

give the best classification for the nearest neighbour cell (i.e. Voronoi cell) for each wj,. It is

unlikely that the cell boundaries (i.e. Voronoi Tesselation) will coincide with the classification

boundaries. The LVQ algorithm attempts to correct this by shifting the boundaries:

1. If the input x and the associated Voronoi vector wI(x) (i.e. the weight of the winning

output node I(x)) have the same class label, then move them closer together by

∆w x wx xI It t t() ()() () ())= −β ((as in the SOM algorithm.

2. If the input x and associated Voronoi vector wI(x) have the different class labels, then

move them apart by ∆w x wx xI It t t() ()() () ())= − −β ((.

3. Voronoi vectors wj corresponding to other input regions are left unchanged with

∆w j t() = 0.

where β(t) is a learning rate that decreases with the number of iterations/epochs of training.

In this way we end up with better classification than by the SOM alone.

RL-24

Overview and Reading

1. The module appears to have achieved its aims and learning outcomes.

2. We began by seeing how we could take simplified versions of the neural

networks found in real brains to produce powerful computational devices.

3. We have seen how Multi-layer Perceptrons, Radial Basis Function

Networks, Committee Machines, and Kohonen Self Organizing Maps can

be set up and trained.

4. We have studied the issues underlying learning and generalization in neural

networks, and how we can improve them both.

5. Along the way we have considered the various implementational and

practical issues that might complicate our endeavours.

Reading

1. Your lecture notes!

