
Hebbian Learning and Gradient Descent Learning

Introduction to Neural Networks : Lecture 5

© John A. Bullinaria, 2004

1. Hebbian Learning

2. Learning by Error Minimisation

3. Computing Gradients and Derivatives

4. Gradient Descent Learning

5. Deriving the Delta Rule

6. Delta Rule vs. Perceptron Learning Rule

L5-2

Hebbian Learning

In 1949 neuropsychologist Donald Hebb postulated how biological neurons learn:

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place on one or both cells such that A’s efficiency as one of the cells
firing B, is increased.”

In other words:

1. If two neurons on either side of a synapse (connection) are activated
simultaneously (i.e. synchronously), then the strength of that synapse is selectively
increased.

This rule is often supplemented by:

2. If two neurons on either side of a synapse are activated asynchronously, then that
synapse is selectively weakened or eliminated.

so that chance coincidences do not build up connection strengths.

L5-3

 Hebbian versus Perceptron Learning

In the notation used for Perceptrons, the Hebbian learning weight update rule is:

∆wij = η . outj . ini

There is strong physiological evidence that this type of learning does take place in the

region of the brain known as the hippocampus.

Recall that the Perceptron learning weight update rule we derived was:

∆wij = η. (targj – outj) . ini

There is some similarity, but it is clear that Hebbian learning is not going to get our

Perceptron to learn a set of training data.

The are variations of Hebbian learning that do provide powerful learning techniques

for biologically plausible networks, such as Contrastive Hebbian Learning, but we

shall adopt another approach for formulating learning algorithms for our networks.

L5-4

Learning by Error Minimisation

The Perceptron Learning Rule is an algorithm for adjusting the network weights wij to

minimise the difference between the actual outputs outj and the desired outputs targj.

We can define an Error Function to quantify this difference:

E w targ outij j j
jp

() = −()∑∑1
2

2

For obvious reasons this is known as the Sum Squared Error function. It is the total
squared error summed over all output units j and all training patterns p.

The aim of learning is to minimise this error by adjusting the weights wij. Typically we

make a series of small adjustments to the weights wij → wij + ∆wij until the error E(wij)

is ‘small enough’.

A systematic procedure for doing this requires the knowledge of how the error E(wij)

varies as we change the weights wij, i.e. the gradient of E with respect to wij.

L5-5

Computing Gradients and Derivatives

There is a whole branch of mathematics concerned with computing gradients – it is
known as Differential Calculus. The basic idea is simple. Consider a function y = f(x)

The gradient, or rate of change, of f(x) at a particular value of x, as we change x can be
approximated by ∆y/∆x. Or we can write it exactly as

∂
∂
f x

x

y

x

f x x f x

xx x

() () ()
Lim Lim= = + −

→ →∆ ∆

∆
∆

∆
∆0 0

which is known as the partial derivative of f(x) with respect to x.

∆y

∆x
x

y

 f(x)

L5-6

Examples of Computing Derivatives Analytically

Some simple examples should make this clearer:

f(x) = a.x + b ⇒
∂

∂
f x

x

a x x b a x b

x
a

x

() .() .
Lim= + +[]− +[] =

→∆

∆
∆0

f(x) = a.x2 ⇒
∂

∂
f x

x

a x x a x

x
ax

x

() .() .
Lim=

+[]− [] =
→∆

∆
∆0

2 2

2

f(x) = g(x) + h(x) ⇒
∂

∂
∂

∂
∂

∂
f x

x

g x x h x x g x h x

x

g x

x

h x

xx

() () () () () () ()
Lim= + + +() − +() = +

→∆

∆ ∆
∆0

Other derivatives can be computed in the same way. Some useful ones are:

f(x) = a.xn ⇒
∂

∂
f x

x
naxn() = −1 f(x) = loge(x) ⇒ ∂

∂
f x

x x

() = 1

f(x) = eax ⇒ ∂
∂
f x

x
aeax() = f(x) = sin(x) ⇒ ∂

∂
f x

x
x

()
cos()=

L5-7

Gradient Descent Minimisation

Suppose we have a function f(x) and we want to change the value of x to minimise f(x).

What we need to do depends on the gradient of f(x). There are three cases to consider:

If ∂
∂

f
x > 0 then f(x) increases as x increases so we should decrease x

If ∂
∂

f
x < 0 then f(x) decreases as x increases so we should increase x

If ∂
∂

f
x = 0 then f(x) is at a maximum or minimum so we should not change x

In summary, we can decrease f(x) by changing x by the amount:

∆x x x
f

xnew old= − = −η ∂
∂

where η is a small positive constant specifying how much we change x by, and the

derivative ∂f/∂x tells us which direction to go in. If we repeatedly use this equation, f(x)

will (assuming η is sufficiently small) keep descending towards its minimum, and hence

this procedure is known as gradient descent minimisation.

L5-8

Gradients in More Than One Dimension

Is it obvious that we need the gradient/derivative itself in the weight update equation,

rather than just the sign of the gradient? Consider the two dimensional function shown

as a contour plot with its minimum inside the smallest ellipse:

A few representative gradient vectors are shown. By definition, they will always be

perpendicular to the contours, and the closer the contours, the larger the vectors. It is

now clear that we need to take the relative magnitudes of the x1 and x2 components of

the gradient vectors into account if we are to head towards the minimum efficiently.

x2

x1

L5-9

Gradient Descent Error Minimisation

Remember that we want to train our neural networks by adjusting their weights wij in

order to minimise the error function:

E w targ outij j j
jp

() = −()∑∑1
2

2

We now see it makes sense to do this by a series of gradient descent weight updates:

∆w
E w

wkl
ij

kl

= −η
∂

∂
()

If the transfer function for the output neurons is f(x), and the activations of the previous

layer of neurons are ini , then the outputs are out f in wj i
i

ij= ∑() , and

∆w
w

targ f in wkl
kl

j i
i

ij
jp

= − −


















∑∑∑η ∂
∂

1
2

2

()

Dealing with equations like this is easy if we use the chain rules for derivatives.

L5-10

Chain Rules for Computing Derivatives

Computing complex derivatives can be done in stages. First, suppose f(x) = g(x).h(x)

∂
∂

∂
∂

∂
∂f x

x

g x x h x x g x h x

x

g x x h x x g x h x

xx x

g x
x

h x
x() (). () (). () () . () (). ()

Lim Lim
() ()

= + + − =
+() +() −

→ →∆ ∆

∆ ∆
∆

∆ ∆
∆0 0

∂
∂

∂
∂

∂
∂

f x

x

g x

x
h x g x

h x

x

() ()
() ()

()= +

We can similarly deal with nested functions. Suppose f(x) = g(h(x))

∂
∂

∂
∂f x

x

g h x x g h x

x

g h x x g h x

xx x

h x
x() (()) (()) (()) (())

Lim Lim
()

= + − =
+ −

→ →∆ ∆

∆
∆

∆
∆0 0

∂
∂

∂
∂

∂
∂

∂
∂f x

x

g h x h x g h x

x

g h x x g h x

xx

g x
h x

x

g x
h x

h x
x() (()) () (()) (()) (())

Lim Lim
()
()

()
()

()

=
+ −

=
+ () −

→ →∆ ∆

∆
∆

∆
∆0 0

∂
∂

∂
∂

∂
∂

f x

x

g h x

h x

h x

x

() (())
()

()= ⋅

L5-11

Using the Chain Rule on our Weight Update Equation

The algebra gets rather messy, but after repeated application of the chain rule, and some

tidying up, we end up with a very simple weight update equation:

∆w
w

targ f in wkl
kl

j i
i

ij
jp

= − −


















∑∑∑η ∂
∂

1
2

2

()

∆w
w

targ f in wkl
kl

j i
i

ij
jp

= − −


















∑∑∑η ∂
∂

1
2

2

()

€

∆w targ f in w
w

f in wkl j i

i

ij
kl

m

m

mj

jp

= − −








 −






















∑ ∑∑∑η ∂
∂

1
2 2 () ()

€

∆w targ f in w f in w
w

in wkl j i

i

ij n

n

nj
kl

m

m

mj

jp

= −








 ′






















∑ ∑ ∑∑∑η ∂
∂

() () ()

L5-12

€

∆w targ f in w f in w in
w

wkl j i

i

ij n

n

nj m

m

mj

kljp

= −








 ′






















∑ ∑ ∑∑∑η
∂
∂

() ()()

€

∆w targ f in w f in w inkl j i

i

ij n

n

ij m

m

mk jl

jp

= −








 ′






















∑ ∑ ∑∑∑η δ δ() ()()

€

∆w targ f in w f in w inkl j i

i

ij n

n

nj k jl

jp

= −








 ′






















∑ ∑∑∑η δ() ()()

€

∆w targ f in w f in w inkl l i

i

il n

n

nl k

p

= −








 ′






















∑ ∑∑η () ()()

€

∆w targ out f in w inkl l l n

n

nl k

p

= −() ′ ∑∑η . ().

The prime notation is defined such that f´ is the derivative of f. We have also used the

Kronecker Delta symbol δij defined such that δij = 1 when i = j and δij = 0 when i ≠ j.

L5-13

The Delta Rule

We now have the basic gradient descent learning algorithm for single layer networks:

∆w targ out f in w inkl l l i
i

il
p

k= −() ′ ∑∑η . ().

Notice that it still involves the derivative of the transfer function f(x). This is clearly

problematic for the simple Perceptron that uses the step function sgn(x) as its threshold

function, because this has zero derivative everywhere except at x = 0 where it is infinite.

f(x)

x + 1/2

x

sgn(x)

L5-14

Fortunately, there is a clever trick we can use that will be apparent from the above graph.

Suppose we had the transfer f(x) = x + 1/2 , then when the target is 1 the network will

learn x = 1/2 , and when the target is 0 it will learn x = –1/2 . It is clear that these values

will also result in the right values of sgn(x), and so the Perceptron will work properly.

In other words, we can use the gradient descent learning algorithm with f(x) = x + 1/2 to

get our Perceptron to learn the right weights. In this case f′(x) = 1 and so the weight

update equation becomes:

∆w targ out inkl l l
p

k= −()∑η .

This is known as the Delta Rule because it depends on the discrepancy

δl = targl – outl

NOTE: We need to be very careful when using tricks like this. We are using one output

function to learn the weights, i.e. f(x) = x + 1/2 , and a totally different one to produce the

required binary outputs of the perceptron, i.e. f(x) = sgn(x). It is easy to get confused!

L5-15

Delta Rule vs. Perceptron Learning Rule

We can see that the Delta Rule and the Perceptron Learning Rule for training Single
Layer Perceptrons have exactly the same weight update equation:

∆w targ f in w inkl l i il
ip

k= −












∑∑η .

However, there are significant underlying differences. The Perceptron Learning Rule
uses the actual activation function f(x) = sgn(x) , whereas the Delta Rule uses the linear
function f(x) = x + 1/2 . The two algorithms were also obtained from very different
theoretical starting points. The Perceptron Learning Rule was derived from a
consideration of how we should shift around the decision hyper-planes, while the Delta
Rule emerged from a gradient descent minimisation of the Sum Squared Error.

The Perceptron Learning Rule will converge to zero error and no weight changes in a
finite number of steps if the problem is linearly separable, but otherwise the weights will
keep oscillating. On the other hand, the Delta Rule will (for sufficiently small η) always
converge to a set of weights for which the error is a minimum, though the convergence to
the precise values of x = ±1/2 will generally proceed at an ever decreasing rate.

L5-16

 Overview and Reading

1. We began with a brief look at Hebbian Learning.

2. We then saw how neural network weight learning could be put into the

form of minimising an appropriate output error function.

3. We then learnt how to compute the gradients/derivatives that would

enable us to formulate efficient error minimisation algorithms.

4. Finally, we saw how gradient descent minimisation procedures could be

used to derive the Delta Rule for training Simple Perceptrons, and

compared it with the Perceptron Learning Rule.

Reading

1. Gurney: Sections 5.1, 5.2, 5.3

2. Beale & Jackson: Section 4.4

3. Callan: Sections 2.1, 2.2

4. Haykin: Sections 2.2, 2.4, 3.3

5. Bishop: Sections 3.1, 3.2, 3.3, 3.4, 3.5

