Hebbian L earning and Gradient Descent L earning

Introduction to Neural Networks : Lecture 5
© John A. Bullinaria, 2004

1. Hebbian Learning

Learning by Error Minimisation
Computing Gradients and Derivatives
Gradient Descent Learning

Deriving theDelta Rule

o 0 kWb

Delta Rule vs. Perceptron Learning Rule

Hebbian L earning

In 1949neuropsychologist Donald Hebb postulated how biological neurons learn:

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place on one or both cells such that A’'s efficiency as one of the cells
firing B, is increased.”

In other words:

1. If two neurons on either side of a synapse (connection) are activated
simultaneously (i.e. synchronously), then the strength of that synapse is selectively
Increased.

This rule is often supplemented by:

2. If two neurons on either side of a synapse are activated asynchronously, then that
synapse is selectively weakened or eliminated.

so that chance coincidences do not build up connection strengths.

L5-2

Hebbian versus Perceptron L earning
In the notation used for Perceptrons, lthabbian learning weight update rule is:
Aw; = n.out . In,

There is strong physiological evidence that this type of learning does take place in the
region of the brain known as th@pocampus

Recall that thé’erceptron learning weight update rule we derived was:
Aw; = 1. (targ; — ouf) . in,

There is some similarity, but it is clear thd¢bbian learning is not going to get our
Perceptron to learn a set of training data.

The are variations of Hebbian learning that do provide powerful learning techniques
for biologically plausible networks, such @sntrastive Hebbian Learning, but we
shall adopt another approach for formulating learning algorithms for our networks.

L5-3

Learning by Error Minimisation

The Perceptron Learning Rule is an algorithm for adjusting the network weights
minimise the difference between the actual outputsand the desired outpuisrg,.

We can define a&rror Function to quantify this difference:
2
E(w;) =33 Y (targ, —out))
P]

For obvious reasons this is known as 8uen Squared Error function. It is the total
squared error summed over all output upaad all training patterns

The aim oflearning is to minimise this error by adjusting the weights Typically we
make a series of small adjustments to the weights- w; + Aw; until the erroe(w;)
Is ‘small enough’.

A systematic procedure for doing this requires the knowledge of how thekgwQr
varies as we change the weighisi.e. thegradient of E with respect tav;.

L5-4

Computing Gradients and Derivatives

There is a whole branch of mathematics concerned with computing gradients — it is
known asDifferential Calculus. The basic idea is simple. Consider a funcyienf(x)

Y a
f(x)

AX

» X

The gradient, or rate of change,f{) at a particular value of, as we change can be
approximated byAy/Ax. Or we can write it exactly as

of (X) _ Ay . f(x+Ax)-f(X)
oX L A_ |lequ01 AX

which is known as thpartial derivative of f(x) with respect to.

L5-5

Examples of Computing Derivatives Analytically

Some simple examples should make this clearer:

_ ad)_, [a.(x+Ax)+b]—[a.x+b]:
f(x)=ax+Db [J EY Lim Ay a

AxX-0

21 2
f(x) = a.X 0 % = %jm[a'(XJrAXA)X] [a.x] = 2ax

(00 = 400 + hoo 7 0D 2 1 (8080 +h(x+8%)) =(909) +h(x)) _ d9(4) , dh(x)
AX x o

Ax-0

Other derivatives can be computed in the same way. Some useful ones are:

_ oF(X) _ _ n1 _ oF(x)_1
f(x)=axX [Pl nax f(x) = loge(x) LJ > x
fx) = [o"fa(xx) = ae™ f(x) = sin(x) [% = coS(X)

L5-6

Gradient Descent Minimisation

Suppose we have a functif@) and we want to change the valuexdd minimisef(x).
What we need to do depends on the gradief{kpf There are three cases to consider:

|f % >0 then f(x)increases ag increases so we should decrease
If % <0 then f(x)decreases as increases so we should increase
If % =0 then f(x)is ata maximum or minimum so we should not change

In summary, we can decredge) by changing by the amount:

of

AX = Xnaw = Xolg = _’7&
wheren is a small positive constant specifying how much we chanigg, and the
derivativedf/ox tells us which direction to go in. If we repeatedly use this equdifign,

will (assumingn is sufficiently small) keep descending towards its minimum, and hence
this procedure is known gsadient descent minimisation.

LS-7

Gradientsin More Than One Dimension

Is it obvious that we need the gradient/derivative itself in the weight update equation,

rather than just the sign of the gradient? Consider the two dimensional function shown
as acontour plot with its minimum inside the smallest ellipse:

i]

X, 4

>X1

A few representative gradient vectors are shown. By definition, they will always be
perpendicular to the contours, and the closer the contours, the larger the vectors. It is
now clear that we need to take the relative magnitudes of, thvedx, components of

the gradient vectors into account if we are to head towards the minimum efficiently.

L5-8

Gradient Descent Error Minimisation

Remember that we want to train our neural networks by adjusting their waiglrts
order to minimise the error function:

2
E(w;)=3 > Z (targl —out.)
p]
We now see it makes sense to do this by a series of gradient descent weight updates:

Awy =-n

deI

If the transfer function for the output neurong(}g, and the activations of the previous
layer of neurons arén;, then the outputs areut; = f(Zln, w;) , and

D fC
AWkI =N argj - f(I, |]) L
d\/\/kI g Et Z E E

Dealing with equations like this is easy if we use the chain rules for derivatives.

L5-9

Chain Rulesfor Computing Derivatives

Computing complex derivatives can be done in stages. First, sufposeg(x).h(x)

of ég(x) | iy Q00N Z 20 ~g0n0) _y (90x) + %2 ax) (1(x) + 1 Ax) - 9(x).h(x)
AX -0 X AX -0 AX
700 - B0 i)+ g T

We can similarly deal with nested functions. Suppf{ge= g(h(x))

KX _, - gh(x+8x)) - g(h(x)) _, . g(h(x) + %5 Ax) - g(h(x))

oX _llem AX _llem AX
K, . gh())+ I Anx)-g(h(x)) . g(h(x))+ 303 (% Ax) - g(h(x))
oX _llem AX _llem AX

a (x) _9(h(x)) Fh(x)
ox on(x) o

L5-10

Using the Chain Rule on our Weight Update Equation

The algebra gets rather messy, but after repeated application of the chain rule, and some
tidying up, we end up with a very simple weight update equation:

g U 0 fC

Aw,, = argj—f(inw;)g L
Mo 2 2 G 71w L

g 0 L

Aw, =-n argj—f(In, IJ) C
2.2 G, B9 TR

qu\mm

[]
Awklz—UEZZZBargj—f(Zm, ' W)
> U .
AWklzngZDargj_f(zlnl u)l:mr (zlnn nj m mj

L5-11

[0
AWkI :ngznarg, - f(ZIﬂI Ij)l:l:l:lf (Zlnn nj)(zln mj)%

AWkI :ngzﬂargj - f(Zlnl |J)|:|Df (zlnn |j)(z|nm mk JI)m

[0
AWkI :ngzﬂargj - f(Zlnl |J)|:|Dr (zlnn nj)(ln 5]|)%

[0
AWkI ’79 D:a'rgl - f(Zlnl |I)|:|Df (Zlnnwnl)(lnk)[%

Aw, =ny (targ —out,).f'(inw,)in,
p n

The prime notationis defined such thdt is the derivative of. We have also used the
Kronecker Deltasymbold,; defined such thaty, =1 wheni =] and g; = 0 wheni #|.

L5-12

The Delta Rule

We now have the basic gradient descent learning algorithm for single layer networks:
Aw, =0 (targ —out).f'(inw,)in,
p [

Notice that it still involves the derivative of the transfer functipq). This is clearly

problematic for the simple Perceptron that uses the step functiox) sgnis threshold
function, because this has zero derivative everywhere except@tvhere it is infinite.

A

f
) e sgr(x)

7
e

> X

X+,

L5-13

Fortunately, there is @ever trick we can use that will be apparent from the above graph.
Suppose we had the transféx) = x + %/, , then when the target is 1 the network will
learnx =1/, , and when the target is 0 it will leaxr= -/, . It is clear that these values
will also result in the right values efink), and so the Perceptron will work properly.

In other words, we can use the gradient descent learning algorithnf(wjth x + %/, to
get our Perceptron to learn the right weights. In this dds¢ = 1 and so the weight
update equation becomes:

Aw, =1y (targ —out)in,
p
This is known as thBelta Rule because it depends on the discrepancy
J = targ, — out

NOTE: We need to be very careful when using tricks like this. We are using one output
function to learn the weights, i.&x) =x + %/, , and a totally different one to produce the
required binary outputs of the perceptron,f(>e.= sgn). It is easy to get confused!

L5-14

Delta Rule vs. Perceptron Learning Rule

We can see that the Delta Rule and the Perceptron Learning Rule for training Single
Layer Perceptrons have exactly the same weight update equation:

] al
Aw, =n arg — fézmiwi in
K %g | i |% k

However, there are significant underlying differences. The Perceptron Learning Rule
uses the actual activation functid{x) = sgn) , whereas the Delta Rule uses the linear
functionf(x) =x + '/, . The two algorithms were also obtained from very different
theoretical starting points. The Perceptron Learning Rule was derived from a
consideration of how we should shift around the decision hyper-planes, while the Delta
Rule emerged from a gradient descent minimisation of the Sum Squared Error.

The Perceptron Learning Rule will converge to zero error and no weight changes in a
finite number of steps if the problem is linearly separable, but otherwise the weights will
keep oscillating. On the other hand, the Delta Rule will (for sufficiently spalways
converge to a set of weights for which the error is a minimum, though the convergence to
the precise values of = £/, will generally proceed at an ever decreasing rate.

L5-15

Overview and Reading

We began with a brief look at Hebbian Learning.

2. We then saw how neural network weight learning could be put into the
form of minimising an appropriate output error function.

3. We then learnt how to compute the gradients/derivatives that would
enable us to formulate efficient error minimisation algorithms.

4. Finally, we saw how gradient descent minimisation procedures could be
used to derive the Delta Rule for training Simple Perceptrons, and
compared it with the Perceptron Learning Rule.

Reading

1. Gurney: Sections 5.1, 5.2, 5.3

Beale & Jackson: Section 4.4

Callan: Sections 2.1, 2.2

Haykin: Sections 2.2, 2.4, 3.3

Bishop: Sections 3.1, 3.2, 3.3, 3.4,35

a kW

L5-16

