
Networks of Artificial Neurons, Single Layer Perceptrons

Introduction to Neural Networks : Lecture 3

© John A. Bullinaria, 2004

1. Networks of McCulloch-Pitts Neurons

2. Single Layer Feed-Forward Neural Networks: The Perceptron

3. Implementing Logic Gates with McCulloch-Pitts Neurons

4. Finding Weights Analytically

5. Limitations of Simple Perceptrons

6. Introduction to More Complex Neural Networks

7. General Procedure for Building Neural Networks

L3-2

Networks of McCulloch-Pitts Neurons

One neuron can’t do much on its own. Usually we will have many neurons labelled by

indices k, i, j and activation flows between them via synapses with strengths wki, wij:

in out wki k ki= out ini ki
k

n

i= −
=

∑sgn()
1

θ in out wij i ij=

inni

∑

in1i

in2i
outi

wij

θi

inij

neuron i neuron j
synapse ij

L3-3

The Perceptron

We can connect any number of McCulloch-Pitts neurons together in any way we like.

An arrangement of one input layer of McCulloch-Pitts neurons feeding forward to one
output layer of McCulloch-Pitts neurons is known as a Perceptron.

Already this is a powerful computational device. Later we shall see variations that
make it even more powerful.

wij

θ1

θ2

θm

1

2

n

1

2

m

i j

out out wj i
i

n

ij j= −
=
∑sgn()

1

θ
•
•
•

•
•
•

L3-4

Implementing Logic Gates with M-P Neurons

We can use McCulloch-Pitts neurons to implement the basic logic gates.

All we need to do is find the appropriate connection weights and neuron thresholds to

produce the right outputs for each set of inputs.

We shall see explicitly how one can construct simple networks that perform NOT,

AND, and OR.

It is then a well known result from logic that we can construct any logical function from

these three operations.

The resulting networks, however, will usually have a much more complex architecture

than a simple Perceptron.

We generally want to avoid decomposing complex problems into simple logic gates, by

finding the weights and thresholds that work directly in a Perceptron architecture.

L3-5

Implementation of Logical NOT, AND, and OR

In each case we have inputs ini and outputs out, and need to determine the weights and

thresholds. It is easy to find solutions by inspection:

NOT
in out

0 1
1 0

AND
in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

OR
in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

-0.5

–1

1.5

1 1

0.5

1 1

L3-6

The Need to Find Weights Analytically

Constructing simple networks by hand is one thing. But what about harder problems?

For example, what about:

How long do we keep looking for a solution? We need to be able to calculate

appropriate parameters rather than looking for solutions by trial and error.

Each training pattern produces a linear inequality for the output in terms of the inputs

and the network parameters. These can be used to compute the weights and thresholds.

XOR
in1 in2 out
0 0 0
0 1 1
1 0 1
1 1 0

?

? ?

L3-7

Finding Weights Analytically for the AND Network

We have two weights w1 and w2 and the threshold θ, and for each training pattern we

need to satisfy

out w in w in= + −()sgn 1 1 2 2 θ

So the training data lead to four inequalities:

It is easy to see that there are an infinite number of solutions. Similarly, there are an

infinite number of solutions for the NOT and OR networks.

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

w1 0 + w2 0 – θ < 0
w1 0 + w2 1 – θ < 0
w1 1 + w2 0 – θ < 0
w1 1 + w2 1 – θ ≥ 0

θ > 0
w2 < θ
w1 < θ

w1 + w2 ≥ θ

⇒ ⇒

L3-8

Limitations of Simple Perceptrons

We can follow the same procedure for the XOR network:

Clearly the second and third inequalities are incompatible with the fourth, so there is in

fact no solution. We need more complex networks, e.g. that combine together many

simple networks, or use different activation/thresholding/transfer functions.

It then becomes much more difficult to determine all the weights and thresholds by

hand. Next lecture we shall see how a neural network can learn these parameters.

First, we need to consider what these more complex networks might involve.

in1 in2 out
0 0 0
0 1 1
1 0 1
1 1 0

w1 0 + w2 0 – θ < 0
w1 0 + w2 1 – θ ≥ 0
w1 1 + w2 0 – θ ≥ 0
w1 1 + w2 1 – θ < 0

θ > 0
w2 ≥ θ
w1 ≥ θ

w1 + w2 < θ

⇒ ⇒

L3-9

ANN Architectures/Structures/Topologies

Mathematically, ANNs can be represented as weighted directed graphs. For our

purposes, we can simply think in terms of activation flowing between processing units

via one-way connections. Three common ANN architectures are:

Single-Layer Feed-forward NNs One input layer and one output layer of processing
units. No feed-back connections. (For example, a simple Perceptron.)

Multi-Layer Feed-forward NNs One input layer, one output layer, and one or more
hidden layers of processing units. No feed-back connections. The hidden layers sit
in between the input and output layers, and are thus hidden from the outside world.
(For example, a Multi-Layer Perceptron.)

Recurrent NNs Any network with at least one feed-back connection. It may, or may
not, have hidden units. (For example, a Simple Recurrent Network.)

Further interesting variations include: short-cut connections, partial connectivity, time-

delayed connections, Elman networks, Jordan networks, moving windows, …

L3-10

Examples of Network Architectures

Multi-Layer
Feed-forward

Recurrent
Network

Single-Layer
Perceptron

Multi-Layer
Perceptron

Simple Recurrent
Network

Single Layer
Feed-forward

L3-11

Other Types of Activation/Transfer Function

Sigmoid Functions These are smooth (differentiable) and monotonically increasing.

The logistic function

Sigmoid()x
e x=

+ −
1

1

Hyperbolic tangent

tanh x
x

x

e

e2
1
1

() = −
+

−

−

Piecewise-Linear Functions Approximations of a sigmoid functions.

f x x() =
≥

≤ ≤
≤

1

0

 if x 0.5

+ 0.5 if - 0.5 x 0.5

 if x 0.5

840- 4- 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ig

m
o

id
(x

)

x

210- 1- 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
x

)

x

840- 4- 8
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ta
n

h
(x

/2
)

x

L3-12

The Threshold as a Special Kind of Weight

It would simplify the mathematics if we could treat the neuron threshold as if it were

just another connection weight. The crucial thing we need to compute for each unit j is:

out w out w out w out wi
i

n

ij j j j n nj j
=
∑ − = + + + −

1
1 1 2 2θ θ...

It is easy to see that if we define w0j = –θj and out0 = 1 then this becomes:

out w out w out w out w out w out wi
i

n

ij j j j n nj j i
i

n

ij
= =
∑ ∑− = + + + + =

1
1 1 2 2 0 0

0

θ ...

This simplifies the basic Perceptron equation so that:

out out w out wj i
i

n

ij j i
i

n

ij= − =
= =
∑ ∑sgn() sgn()

1 0

θ

We just have to include an extra input unit with activation out0 = 1 and then we only

need to compute “weights”, and no explicit thresholds.

L3-13

Example : A Classification Task

A typical neural network application is classification. Consider the simple example of

classifying aeroplanes given their masses and speeds:

Mass Speed Class

1.0 0.1 Bomber

2.0 0.2 Bomber

0.1 0.3 Fighter

2.0 0.3 Bomber

0.2 0.4 Fighter

3.0 0.4 Bomber

0.1 0.5 Fighter

1.5 0.5 Bomber

0.5 0.6 Fighter

1.6 0.7 Fighter

How do we construct a neural network that can classify any Bomber and Fighter?

L3-14

General Procedure for Building Neural Networks

Formulating neural network solutions for particular problems is a multi-stage process:

1. Understand and specify your problem in terms of inputs and required outputs, e.g.

for classification the outputs are the classes usually represented as binary vectors.

2. Take the simplest form of network you think might be able to solve your problem,

e.g. a simple Perceptron.

3. Try to find appropriate connection weights (including neuron thresholds) so that

the network produces the right outputs for each input in its training data.

4. Make sure that the network works on its training data, and test its generalization

by checking its performance on new testing data.

5. If the network doesn’t perform well enough, go back to stage 3 and try harder.

6. If the network still doesn’t perform well enough, go back to stage 2 and try harder.

7. If the network still doesn’t perform well enough, go back to stage 1 and try harder.

8. Problem solved – move on to next problem.

L3-15

Building a Neural Network for Our Example

For our aeroplane classifier example, our inputs can be direct encodings of the masses

and speeds. Generally we would have one output unit for each class, with activation 1

for ‘yes’ and 0 for ‘no’. With just two classes here, we can have just one output unit,

with activation 1 for ‘fighter’ and 0 for ‘bomber’ (or vice versa). The simplest network

to try first is a simple Perceptron. We can further simplify matters by replacing the

threshold by an extra weight as discussed above. This gives us:

class w w Mass w Speed= + +sgn(. .)0 1 2

That’s stages 1 and 2 done. Next lecture we begin a systematic look at how to proceed

with stage 3, first for the Perceptron, and then for more complex types of networks.

w0

1 Mass Speed

w1 w2

L3-16

Overview and Reading

1. Networks of McCulloch-Pitts neurons are powerful computational

devices, capable of performing any logical function.

2. However, simple Single-Layer Perceptrons with step-function activation

functions are limited in what they can do (e.g. they can’t do XOR).

3. Many more powerful neural network variations are possible – we can

vary the architecture and/or the activation function.

4. Finding the appropriate connection weights and thresholds will then

usually be too hard to do by trial and error or simple computation.

Reading

1. Haykin: Sections 1.4, 1.6

2. Gurney: Sections 3.1, 3.2

3. Callan: Sections 1.1, 1.2

