
Overview of More Advanced Topics

Introduction to Neural Networks : Lecture 19

© John A. Bullinaria, 2004

1. Optimal Network Architectures

2. Recurrent Networks

3. The Hopfield Model

4. The Boltzmann Machine

5. Bayesian Techniques

6. Adaptive Resonance Theory

7. Support Vector Machines

8. Evolving Neural Networks

L19-2

Optimal Network Architectures

We have seen that finding a good neural network architecture (e.g. setting the number of

hidden units) is very important, and also very problem dependent.

There are various different criteria for what is optimal, usually it is generalization

ability, but learning time, memory requirements, and so on, may also be important.

In the same way that we can have our networks learn their weights incrementally, we

can modify our network architecture, to suit its given task, in an incremental fashion.

There are two natural ways to proceed:

1. Start with too few hidden units, and add some more ⇒ Constructive algorithms

2. Start with too many hidden units, and take some away ⇒ Pruning algorithms

Many algorithms exist for each approach – we shall just consider a couple of popular

examples for each.

L19-3

Constructive Algorithms

The simplest “constructive” approach is to train a series of networks, each with an

increasing number of hidden units, until we are convinced that we have found the

number that gives the best generalization (or whatever our criteria is). However, this is

very wasteful in terms of having to start the training from scratch for each iteration. A

better approach is the keep each existing network and only train the new portions of it.

For example, we can add hidden units in the sequence shown, with each additional unit

trained to deal with the remaining incorrect training patterns. The hidden representation

is then linearly separable, and the output weights can be trained very easily.

1 2 3 4 5

1

Inputs

L19-4

Cascade Correlation

Another efficient approach, that is applicable to problems with continuous variables, is

known as Cascade Correlation. For each new hidden unit, we first learn the weights

into the new unit by maximising the correlation (in effect the covariance) between the

network’s residual error and the new unit’s output, and then freeze all the weights into

the hidden units and train the output weights to minimise the output errors.

There are two particularly important advantages to this algorithm: (i) each training stage

is just a single layer network which converges rapidly, (ii) once trained, the hidden unit

activation for each training pattern is fixed, and not re-computed at each stage.

2

3

4

1

Inputs

L19-5

Pruning Algorithms

We have already seen how adding a regularization term into the gradient descent cost

function can be used to encourage the decay of unnecessary weights and effectively

prune out unwanted connections.

We can also remove connections explicitly. If our gradient descent (e.g. sum squared)

error function is E({ wij}), then we can define the saliency of each weight wkl as

s E w w E wkl ij kl ij= = −({ : }) ({ })0

i.e. how much the error increases when we remove that weight from the network. We

can then define an iterative procedure whereby we train the network, compute all the

saliencies, remove the weight(s) with the lowest saliency, and repeat the process until

even the lowest saliencies are ‘large’, or until the error on some validation set starts

rising again. This can be computationally expensive, but we can compute derivatives to

estimate the saliencies and avoid multiple runs to determine the E w wij kl({ : })= 0 .

L19-6

Optimal Brain Damage

We can always expand our error function as a Taylor series

E w w E w
E w

w
w

E w

w w
w w O wij ij ij

ij

ij
ij

i j

ij

ij kl
ij kl

k li j

({ }) ({ })
({ }) ({ })

()
, ,,

+ = + + +∑ ∑∑δ
∂

∂
δ

∂
∂ ∂

δ δ δ1
2

2
3

in which the second order derivative is known as the Hessian matrix

H
E w

w wijkl
ij

ij kl

=
∂
∂ ∂

2 ({ })

If we assume individual weights are small, and use the fact that the first derivatives are

zero for a fully trained network, then we can set δwij = – wij and estimate the saliency as

s H w wij ijij ij ij= 1
2

Iteratively training and pruning the network weights using the lowest values of this

quantity is known as optimal brain damage. A related, more efficient, approach is

known as optimal brain surgeon.

L19-7

Recurrent Networks

The fundamental feature of a recurrent network is that the network contains at least one

feed-back connection, so activation can flow around in a loop.

The networks can then do temporal processing. In doing so they become dynamical

systems and we have to worry about their stability, controllability and observability.

The architectures of recurrent networks can take many different forms. However, they

all share the following common features:

1. They incorporate some form of static multi-layer perceptron as a sub-system.

2. They exploit the powerful non-linear mapping capabilities of the multi-layer

perceptron, plus some form of memory.

Learning can be achieved by similar gradient descent procedures to those we used to

derive the back-propagation algorithm. Turing machines may be simulated by fully

connected recurrent networks based on neurons with sigmoidal activation functions.

L19-8

The Fully Recurrent Network

The basic fully recurrent network (state space model) has the hidden unit activations

feeding back into the network along with the inputs of the next time step:

Note that we have to discretise time and update the activations one time step at a time.

This might correspond to the time scale at which real neurons operate, or for artificial

systems it can be any time step size appropriate to the problem in hand. A delay unit is

introduced which simply delays the signal/activation until the next time step.

Delay

Inputs

Outputs

Hidden Units

x(t)

h(t+1) h(t+1)

h(t)

L19-9

The Hopfield Model

The Hopfield Model/Network is a fully connected network of N McCulloch-Pitts

neurons that deals with the basic associative memory problem:

Store a set of P binary valued patterns {tp} = { ti
p} in such a way that when presented

with a new pattern s = { si} the network responds by producing whichever stored

pattern most closely resembles s.

We use activation values ±1 rather than 0 and 1, so the neuron activation equation is

x H w xi ij j i
j

= −

∑ θ where H x() =

+ ≥
− <

1

1

 if x 0

 if x 0

which can be updated synchronously or asynchronously. The weights are given by

w
N

t tij i
p

j
p

p

P

=
=

∑1

1

 , θi = 0

L19-10

A pattern tq will be stable if the neuron update equation doesn’t change anything, i.e.

t H w t H
N

t t ti
q

ij j
q

i
j

i
p

j
p

j
q

pj

= −

=

∑ ∑∑θ 1

We can see what is happening by separating out the q term from the p sum to give

t H t
N

t t ti
q

i
q

i
p

j
p

j
q

p qj

= +

≠
∑∑1

If the second term in this were zero we could immediately conclude that pattern number

q was stable. We still have stability for non-zero values as long as the magnitude of the

second term is smaller than 1, because that will not be enough to move us over the step

of the step function H. This happens in most cases of interest as long as the number of

stored patterns P is small enough. Not only are the stored patterns stable, but they are

attractors of patterns close by. Estimates of what constitutes a small enough number P

leads to the idea of the storage capacity of a Hopfield network. A full discussion of

Hopfield Networks can be found in most introductory books on neural networks.

L19-11

Boltzmann Machine

A Boltzmann Machine is a Hopfield Network composed of N units with states {xi}.

The state of unit i is updated asynchronously according to the rule

x
p

pi
i

i

=
+
− −

1

1 1

 with probability

 with probability

where
p

w x T
i

ij j jj

N
=

+ − −()=∑
1

1
1

exp () /θ

with positive temperature constant T, and wij j,θ are the networks weights and biases.

The fundamental difference between the Boltzmann Machine and a standard Hopfield

Network is the stochastic activation of the units. If T is very small, the dynamics of the

Boltzmann Machine approximates the dynamics of the discrete Hopfield Network, but

when T is large the network visits the whole state space. Another difference is that the

nodes of a Boltzmann Machine are split between visible input and output nodes, and

hidden nodes, and the aim is to have the machine learn input-output mappings.

L19-12

For both Hopfield Networks and Boltzmann Machines we can define an energy function

E w x x xij i j i
i

N

j

N

i

N

i= − +
===
∑∑∑1

2 111

θ

and the network activation updates cause the network to settle into a local minima of

this energy. This implies that the stored patterns will be local minima of the energy. If

a Boltzmann Machine starts off with a high temperature and is gradually cooled (known

as simulated annealing), it will tend to stay longer in the basins of attraction of the

deepest minima, and have a good change of ending up in a global minimum at the end.

To train the network we can use the Boltzmann learning algorithm

∆w
T

x x x xij i j fixed i j free
= − −()η

where x xi j fixed is the expected/average product of xi and xj during training with the

input and output nodes fixed at a training pattern and the hidden nodes free to update,

and x xi j free is the corresponding quantity if the output nodes are also free. Further

details about Boltzmann Machines can be found in most introductory textbooks.

L19-13

Bayesian Techniques

Suppose we have input vectors {xp} and corresponding output target vectors T = {tp}.

Now consider a set {Mi} of different models M i which we label to have increasing

flexibility, e.g. networks with increasing numbers of hidden units. We can compute the

posterior probability of each model, given the data T using Bayes rule

p T p T p p Ti i i(|) (|) () ()M M M=

The prior probabilities p i()M can be assigned equal values, and the denominator p T()

does not depend on the model, so the models can be compared using only the evidence

p T i(|)M . We can use a similar expression for the network weights W = {wij
p}

p W T p T W p W p T(|) (|) () ()=

A good prior weight distribution p W() is a Gaussian around zero weights which will

keep the network mapping smooth and hence give good generalization. In the Bayesian

framework the posterior weight distribution p W T(|) defines the “trained” network.

L19-14

Bayesian inference techniques for neural networks offer many important advantages:

1. The conventional training method of error minimization arises as a particular

approximation to the Bayesian approach.

2. Regularization can be given a natural interpretation, and values of large numbers

of regularization parameters can be selected using only the training data, without

the need for separate training and validation data.

3. Different models (e.g. networks with different numbers of hidden units, or even

different network types) can be compared using only the training data.

4. Choices can be made about where in input space new data should be collected in

order that it be the most informative – this is known as active learning.

5. The relative importance of different inputs can be determined using the Bayesian

technique of automatic relevance determination. This is based on the use of a

separate regularization coefficient for each input.

6. For regression problems, error bars, or confidence intervals, can be assigned to

the predictions generated by the network.

For further details of this powerful approach to neural networks, see Bishop Chapter 10.

L19-15

Adaptive Resonance Theory (ART)

This is actually a whole range of unsupervised incremental clustering neural networks

designed for dynamically self-organizing data. Most systems are either stable but not

capable of forming new clusters, or incremental but unstable. The ART-1 network

manages both with binary input vectors, and ART-2 with continuous input vectors.

All ART systems implement a process of matching the inputs with cluster templates that

leads to a resonant state and weights updating. If no sufficiently well matched template

exists, a new template is created and set equal to the current input pattern.

ARTMAP is a supervised version that learns input-output mappings by linking together

two ART-1 modules by an intermediate layer or map field. Fuzzy versions of ART-1

give rise to the Fuzzy ARTMAP architecture. ART-3 allows a series of ART-2 modules

to be linked into a processing hierarchy.

The whole ART family is covered well in Gurney Chapter 9.

L19-16

Support Vector Machines (SVM)

This is another category of universal feed-forward networks. It is a linear machine that

constructs hyper-plane decision boundaries in such a way that the margin of separation

between positive and negative examples is maximized. It does this by following a

principled approach based on statistical learning theory.

Crucial to the SVM learning algorithm is a set of support vectors consisting of a small

sub-set of the training data selected by the algorithm. These are the data points that lie

closest to the decision/boundary surfaces, and are therefore the most difficult to classify.

They have the most direct bearing on the optimum location of the decision surfaces as

the hyper-planes furthest from the support vectors.

The approach is very general and different variations can lead to many different learning

machine architectures (including RBF and MLP networks).

Probably the best description of SVMs is in Haykin Chapter 6.

L19-17

Evolving Neural Networks

Most neural network systems have many parameters and other details that need setting

appropriately for good performance (e.g. their architecture, learning rates, regularization

parameters, and so on). In biological systems, these details have evolved so that the

systems perform well. The idea of using simulated evolution by natural selection to

generate high performance neural networks is becoming increasingly popular.

The general idea is to take a whole population of neural networks each specified by some

genotypic encoding of its architecture and other parameters. Each individual network is

then tested on its chosen task (e.g. learning a given set of training data) and its fitness

determined (e.g. its speed of learning, or its final generalization error). The best/fittest

individuals are then selected as the basis of the next generation. Simulated cross-over

and mutation at the genotypic level results in a new population, and the process is then

repeated. By selecting the best individuals of each generation to survive and ‘breed’, the

average individual performance levels tend to improve from one generation to the next.

We naturally eventually end up with a population of very fit neural networks.

L19-18

Overview and Reading

1. We started with some natural extensions of what we have seen before:

constructive and pruning algorithms, and recurrent networks.

2. Then we looked at a selection of more advanced neural network types:

Hopfield Networks, Boltzmann Machines, Bayesian Networks, Adaptive

Resonance Theory (ART), and Support Vector Machines (SVM).

3. Finally, we looked at the idea of Evolving Neural Networks.

Reading

1. Haykin: Sections 4.15, 6.1-6.9, 11.7, 14.7, 15.1-15.8

2. Hertz, Krogh & Palmer: Sections 2.1, 2.2, 6.6, 7.1-7.3, 9.3

3. Bishop: Sections 9.5, 10.0-10.10

4. Gurney: Sections 6.10, 7.1-7.10, 9.1-9.7

5. Beale & Jackson: Sections 6.1-6.5, 7.1-7.8

