
Learning Vector Quantization (LVQ)

Introduction to Neural Networks : Lecture 18

© John A. Bullinaria, 2004

1. What is Vector Quantization?

2. The Encoder-Decoder Model

3. Relation between a SOM and Noisy Encoder-Decoder

4. Voronoi Tessellation

5. Learning Vector Quantization (LVQ)

L18-2

What is a Vector Quantization?

We have already seen that one aim of using a Self Organizing Map (SOM) is to encode

a large set of input vectors {x} by finding a smaller set of “representatives” or

“prototypes” or “code-book vectors” {wI(x)} that provide a good approximation to the

original input space. This is the basic idea of vector quantization theory, the motivation

of which is dimensionality reduction or data compression.

In effect, the error of the vector quantization approximation is the total squared distance

D I= −∑ x w x
x

()
2

between the input vectors {x} and their representatives {wI(x)}, and we clearly wish to

minimize this. We shall see that performing a gradient descent style minimization of D

does lead to the SOM weight update algorithm, which confirms that it is generating the

best possible discrete low dimensional approximation to the input space (at least

assuming it does not get trapped in a local minimum of the error function).

L18-3

The Encoder – Decoder Model

Probably the best way to think about vector quantization is in terms of general encoders

and decoders. Suppose c(x) acts as an encoder of the input vector x, and x´(c) acts as a

decoder of c(x), then we can attempt to get back to x with minimal loss of information:

Generally, the input vector x will be selected at random according to some probability

function p(x). Then the optimum encoding-decoding scheme is determined by varying

the functions c(x) and x´(c) to minimize the expected distortion defined by

D d p= − ′ = − ′∑ ∫x x c x x x x x c x
x

(()) () (())
2 2

Encoder
c(x)

Decoder
x´(c)

Input Vector
x

Reconstructed Vector
x´(c)

Code
c(x)

L18-4

The Generalized Lloyd Algorithm

The necessary conditions for minimizing the expected distortion D in general situations

are embodied in the two conditions of the generalized Lloyd algorithm:

Condition 1. Given the input vector x, choose the code c = c(x) to minimize the

squared error distortion x x c− ′() 2.

Condition 2. Given the code c, compute the reconstruction vector x´(c) as the

centroid of those input vectors x that satisfy condition 1.

To implement vector quantization, the algorithm works in batch mode by alternately

optimizing the encoder c(x) in accordance with condition 1, and then optimizing the

decoder in accordance with condition 2, until D reaches a minimum.

To overcome the problem of local minima, it may be necessary to run the algorithm

several times with different initial code vectors.

L18-5

The Noisy Encoder – Decoder Model

In real applications the encoder-decoder system will also have to cope with noise in the

communication channel. We can treat the noise as an additive random variable νννν with

probability density function π(νννν), so the model becomes

It is not difficult to see that the expected distortion is now given by

D d p dν π= − ′ + = − ′ +∑∑ ∫∫x x c x x x x x c x
x

(()) () (())νν νν ((νν)) νν
νν

2 2

Encoder
c(x)

Decoder
x´(c)

Input Vector
x

Reconstructed Vector
x´(c)

ΣΣΣΣ

Noise
νννν

L18-6

The Generalized Lloyd Algorithm with Noise

To minimize the modified expected distortion Dν we can compute the relevant partial

derivatives and use the modified generalized Lloyd algorithm:

Condition 1. Given the input vector x, choose the code c = c(x) to minimize the

distortion measure d∫ − ′ +νν ((νν)) ννπ x x c x(()) 2.

Condition 2. Given the code c, compute the reconstruction vector x´(c) to satisfy

′ = − −∫ ∫x c x x c c x x x x c c x() () () () ()d p d pπ π(()) (()).

If we set the noise density function π(νννν) to be the Dirac delta function δ(νννν), that is zero

everywhere except at νννν = 0, these conditions reduce to the conditions we had before in

the no noise case. We can usually approximate Condition 1 by a simple nearest

neighbour approach, and then we can determine that the appropriate iterative updates of

the reconstruction vector x´(c) for condition 2 are ∆ ′ − − ′x c c c x x x c() ~ () ())π(())((.

L18-7

Relation between a SOM and Noisy Encoder–Decoder

We can now see that there is a direct correspondence between the SOM algorithm and

the noisy encoder-decoder model:

Noisy Encoder-Decoder Model SOM Algorithm

Encoder c(x) Best matching neuron I(x)

Reconstruction vector x´(c) Connection weight vector wj

Probability density function π(c – c(x)) Neighbourhood function Tj I, ()x

This provides us with a proof that the SOM algorithm is a vector quantization algorithm

which provides a good approximation to the input space.

Note that the topological neighbourhood function Tj I, ()x in the SOM algorithm has the

form of a probability density function.

L18-8

Voronoi Tessellation

A vector quantizer with minimum encoding distortion is called a Voronoi quantizer or

nearest-neighbour quantizer. The input space is partitioned into a set of Voronoi or

nearest neighbour cells each containing an associated Voronoi or reconstruction vector:

The SOM algorithm provides a useful method for computing the Voronoi vectors (as

weight vectors) in an unsupervised manner. One common application is to use it for

finding good centres (input to hidden unit weights) in RBF networks.

L18-9

Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) is a supervised version of vector quantization that

can be used when we have labelled input data. This learning technique uses the class

information to reposition the Voronoi vectors slightly, so as to improve the quality of the

classifier decision regions. It is a two stage process – a SOM followed by LVQ:

This is particularly useful for pattern classification problems. The first step is feature

selection – the unsupervised identification of a reasonably small set of features in which

the essential information content of the input data is concentrated. The second step is the

classification where the feature domains are assigned to individual classes.

SOM LVQ
Inputs Class labels

Teacher

L18-10

The LVQ Algorithm

The basic LVQ algorithm is actually quite simple. It starts from a trained SOM with

input vectors {x} and weights/Voronoi vectors {wj}. We then use the classification

labels of the inputs to find the best classification label for each wj, i.e. for each Voronoi

cell. It is unlikely that these Voronoi cell boundaries will match the classification

boundaries. The LVQ algorithm attempts to correct this by shifting the boundaries:

1. If the input x and the associated Voronoi vector/weight wI(x) (i.e. the weight of

the winning output node I(x)) have the same class label, then move them closer

together by ∆w x wx xI It t t() ()() () ())= −β ((as in the SOM algorithm.

2. If the input x and associated Voronoi vector/weight wI(x) have the different

class labels, then move them apart by ∆w x wx xI It t t() ()() () ())= − −β ((.

3. Voronoi vectors/weights wj corresponding to other input regions are left

unchanged with ∆w j t() = 0.

where β(t) is a learning rate that decreases with the number of iterations/epochs of

training. In this way we get better classification than by the SOM alone.

L18-11

The LVQ2 Algorithm

A second, improved, LVQ algorithm known as LVQ2 is sometimes preferred because it

comes closer in effect to Bayesian decision theory.

The same weight/vector update equations are used as in the standard LVQ, but they

only get applied under certain conditions, namely when:

1. The input vector x is incorrectly classified by the associated Voronoi vector wI(x).

2. The next nearest Voronoi vector wS(x) does give the correct classification, and

3. The input vector x is sufficiently close to the decision boundary (perpendicular

bisector plane) between wI(x) and wS(x).

In this case, both vectors wI(x) and wS(x) are updated (using the incorrect and correct

classification update equations respectively).

Various other variations on this theme exist (LVQ3, etc.), and this is still a fruitful

research area for building better classification systems.

L18-12

Overview and Reading

1. We began with an overview of what vector quantization is.

2. We then looked at general encoder-decoder models and noisy encoder-

decoder models, and the generalized Lloyd algorithm for optimizing

them. This led to a clear relation between SOMs and vector quantization.

3. We ended by studying learning vector quantization (LVQ) from the

point of view of Voronoi tessellation, and saw how the LVQ algorithm

could optimize the class decision boundaries generated by a SOM.

Reading

1. Haykin: Section 9.5, 9.7, 9.8, 9.10, 9.11

2. Beale & Jackson: Sections 5.6

3. Gurney: Section 8.3.6

4. Hertz, Krogh & Palmer: Sections 9.2

5. Ham & Kostanic: Section 4.1, 4.2, 4.3

