Radial Basis Function Networks: Applications

Introduction to Neural Networks : Lecture 14

© John A. Bullinaria, 2004

1. Supervised RBF Network Training

2. Regularization Theory for RBF Networks
3. RBF Networks for Classification

4. The XOR Problem in RBF Form

5. Comparison of RBF Networks witddLPs

6. Real World Application — EEG Analysis

Supervised RBF Network Training

Supervised training of the basis function parameters will generally give better results
than unsupervised procedures, but the computational costs are usually enormous.

The obvious approach is to perform gradient descent on a sum squared output error
function as we did for ouMILPs. The error function would be

M
E= Z%(yk(xp)—tf)z - Z%(ZWM%(Xp’“J’Ui)_tf)Z
p p j=0

and we would iteratively update the weights/basis function parameters using

7= OE oE
AWy =Ny D=, A =,
jk dek J lJa’Uij | Uan

We have all the problems of choosing the learning natessoiding local minima and
so on, that we had for trainifdgLPs by gradient descent. Also, there is a tendency for
the basis function widths to grow large leaving non-localised basis functions.

L14-2

Regularization Theory for RBF Networks

Instead of restricting the number of hidden units, an alternative approach for preventing
overfitting in RBF networks comes from the theoryrefularization, which we saw
previously was a method of controlling the smoothness of mapping functions.

We can have one basis function centred on each training data point as in the case of
exact interpolation, but add an extra term to the error measure which penalizes
mappings which are not smooth. If we have network outgp(® and sum squared

error measure, we can introduce some appropriate differential opg@aaimvrite

E %% Z(yk(x%—tkp)z *AY J’ Py, (x) dx

whereA is the regularization parameter which determines the relative importance of
smoothness compared with error. There are many possible foriRrdtdrthe general

idea is that mapping functionygx) which have large curvature should have large values
of |B, (x)|2 and hence contribute a large penalty in the total error function.

L14-3

Computing the Regularized Weights

Provided theaegularization term is quadratic y(x), the second layer weights can still
be found by solving a set of linear equations. For exampleetuarizer

1mZYk(Xp)EF[
133 530

certainlypenalizes large output curvature, anthimizing the error functioft now leads to
linear equations for the output weights that are no harder to solve than we had before

MW= ®'T =0

In this we have defined the same matrices with compon@#hls € wy;, (P),; = @(x?),
and [T), = {t"} as before, and also thiegularized version ob'®

I’’’ P
M=o+ /\Z P

Clearly forA = 0 this reduces to the un-regularized result we derived in the last lecture.

L14-4

RBF Networks for Classification

So far we have concentrated on RBF networks for function approximation. They are
also useful for classification problems. Consider a data set that falls into three classes:

3
@@@
o ©O % ©
0© o °
O O O ® @
o 00O
> >

An MLP would naturally separate the classes with hyper-planes in the input space (as
on the left). An alternative approach would be to model the separate class distributions
by localised radial basis functions (as on the right).

L14-5

Implementing RBF Classification Networks

In principle, it is easy to have an RBF network perform classification — we simply need
to have an output function(x) for each clask with appropriate targets

tp:[ﬂ' if pattern p belongsto class k
‘ EQ otherwise

and, when the network is trained, it will automatically classify new patterns.

The underlying justification is found i@over’s theoremwhich states that “A complex
pattern classification problem cast in a high dimensional space non-linearly is more
likely to be linearly separable than in a low dimensional space”. We know that once we
have linear separable patterns, the classification problem is easy to solve.

In addition to the RBF network outputting good classifications, it can be shown that the
outputs of such a regularized RBF network classifier will also provide estimates of the
posterior class probabilities

L14-6

The XOR Problem Revisited

We are already familiar with the non-linearly separable XOR problem:

|| OO

=R
ol |k |o
/o
/
/Q

A WIN L |T

AQD\\.\\ >X1
We know that Single Layer Perceptrons with step or sigmoidal activation functions cannot
generate the right outputs, because they are only able to form a single decision boundary. To

deal with this problem using Perceptrons we needed to either change the activation function,
or introduce a non-linear hidden layer to give an Multi Layer Perceptron (MLP).

L14-7

The XOR Problem in RBF Form

Recall that sensiblBBFs areM Gaussiang, (x) centred at random training data points:
0 M 2[
B =ep o k- 'L where {u} 0{x’)
dmax

To perform the XOR classification in an RBF network, we start by deciding how many
basis functions we need. Given there are four training patterns and two diassés,

seems a reasonable first guess. We then need to decide on the basis function centres.
The two separated zero targets seem a good bet, so we ¢ar+£610) andp, = (1,1)

and the distance between thend js = V2. We thus have the two basis functions

a0 = ep(-x-wl?) with w=(0,0)
®0) = exp(-x-p,f) with = (1)
This will hopefully transform the problem into a linearly separable form.

L14-8

The XOR Problem Basis Functions

Since the hidden unit activation space is only two dimensional we can easily plot how
the input patterns have been transformed:

@
A
P X1 Xo @, @ 4
1 0 0 1.0000 | 0.1353 O
2 0 1 0.3678 | 0.3678
3 1 0 0.3678 | 0.3678 5
4 | 1 | 1 [01353 1.0000 ®\0o"

We can see that the patterns are now linearly separable. Note that in this case we did
not have to increase the dimensionality from the input space to the hidden unit/basis
function space — the non-linearity of the mapping was sufficierercise check what
happens if you chose two different basis function centres.

L14-9

The XOR Problem Output Weights

In this case we just have one outg(x), with one weighw; to each hidden unjt and
one bias 8. This gives us the network’s input-output relation for each input pattern

Y(X) = W@ (X) +Wo(X) — 6
Then, if we want the outpuyx®) to equal the targetd we get the four equations

1.0000w;, +0.1353w, —1.00000 =0
0.3678w;, + 0.3678w, —1.00006 =1
0.3678w;, + 0.3678w, —1.00008 =1
0.1353w; +1.0000w, —1.00008 =0
Three are different, and we have three variables, so we can easily solve them to give

This completes our “training” of the RBF network for the XOR problem.

L14-10

Comparison of RBF Networks with MLPs

There are clearly a number of similarities between RBF networkMaRd:
Similarities
1. They are both non-linear feed-forward networks

2. They are both universalpproximators

3. They are used in similar application areas

It is not surprising, then, to find that there always exists an RBF network capable of
accurately mimicking a specified MLP, or vice versa. However the two networks do
differ from each other in a number of important respects:

Differences

1. An RBF network (in its natural form) has a single hidden layer, whereas MLPs

can have any number of hidden layers.

L14-11

2. RBF networks are usually fully connected, whereas it is commoMlfés to be
only partially connected.

3. In MLPs the computation nodes (processing units) in different layers share a
common neuronal model, though not necessarily the same activation function. In
RBF networks the hidden nodes (basis functions) operate very differently, and
have a very different purpose, to the output nodes.

4. In RBF networks, the argument of each hidden unit activation function is the
distancebetween the input and the “weights” (RBF centres), wherel s it
IS theinner productof the input and the weights.

5. MLPs are usually trained with a single global supervised algorithm, whereas RBF
networks are usually trained one layer at a time with the first layer unsupervised.

6. MLPs construcgjlobal approximations to non-linear input-output mappings with
distributed hidden representations, whereas RBF networks tend tmceskesed
non-linearities (Gaussians) at the hidden layer to condtrealtapproximations.

Although, for approximating non-linear input-output mappings, the RBF networks can
be trained much fastdv]LPs may require a smaller number of parameters.

L14-12

Real World Application — EEG Analysis

One successful RBF network deteggsleptiform artefacts in EEG recordings:

RBF Neural Network Classifier

Weighted histo-
gram filter |

Zero-level |

g C‘,lﬂL:ﬂificatiun
samraton

esult

EEG

- L::rw-amp_llludt -
saruranon

g High frequency| LT
contamination (AN

|
Preprocessing Input layer Hidden layer Output layer

For full details see the original paper by: ®aastamoinen, T. Pietila, Aarri, M.
Lehtokangas, & J. Saarinen, (1998). Waveform detection with RBF network —
Application to automated EEG analydWeurocomputing, vol. 20, pp. 1-13

L14-13

Overview and Reading

1. We began by looking at how supervised RBF training would work.
2. Then we considered usimggularization theory for RBF networks.

3. We then saw how we can use RBF networks for classification tasks and
noted the relevance of Cover’s theorem onsdygarability of patterns.

4. As a concrete example, we considered how the XOR problem could be
dealt with by an RBF network. We explicitly computed all the basis
functions and output weights for our network.

5. Then we went through a full comparison of RBF networksMbB&s.

6. We ended by looking at a real world application — EEG analysis.

Reading

1. Bishop: Sections 5.3, 5.4, 5.7, 5.8, 5.10
2. Haykin: Sections 5.2, 5.5, 5.6, 5.11, 5.14, 5.15

L14-14

