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Improving Generalization

We have seen that, for our networks to generalize well, we need to avoid both under-

fitting of the training data (which corresponds to high statistical bias) and over-fitting of

the training data (which corresponds to high statistical variance).

There are a number of approaches for improving generalization – we can:

1. Arrange to have the optimum number of free parameters (independent connection

weights) in our model.

2. Stop the gradient descent training at the appropriate point.

3. Add a regularization term to the error function to smooth out the mappings that

are learnt.

4. Add noise to the training patterns to smooth out the data points.

To employ these effectively we need to be able to estimate from our training data what

the generalization is likely be.
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Training, Validation and Testing Data Sets

We have talked about training data sets – the data used for training our networks.  The

testing data set is the unseen data that is used to test the network’s generalization.

We usually want to optimize our network’s training procedures to result in the best

generalization, but using the testing data to do this would clearly be cheating.  What we

can do is assume that the training data and testing data are drawn randomly from the

same data set, and then any sub-set of the training data that we do not train the network

on can be used to estimate what the performance on the testing set will be, i.e. what the

generalization will be.  The portion of the data we have available for training that is

withheld from the network training is called the validation data set, and the remainder

of the data is called the training data set.  This approach is called the hold out method.

The idea is that we split the available data into training and validation sets, train various

networks using the training set, test each one on the validation set, and the network

which is best is likely to provide the best generalization to the testing set.
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Cross Validation

Often the availability of training data is limited, and using part of it as a validation set is

not practical.  An alternative is to use the procedure of cross-validation.

In K-fold cross-validation we divide all the training data at random into K distinct

subsets, train the network using K–1 subsets, and test the network on the remaining

subset.  The process of training and testing is then repeated for each of the K possible

choices of the subset omitted from the training.  The average performance on the K

omitted subsets is then our estimate of the generalization performance.

This procedure has the advantage that is allows us to use a high proportion of the

available training data (a fraction 1–1/K) for training, while making use of all the data

points in estimating the generalization error.  The disadvantage is that we need to train

the network K times.  Typically K ~ 10 is considered reasonable.

If K is made equal to the full sample size, it is called leave-one-out cross validation.
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Weight Restriction and Weight Sharing

Perhaps the most obvious way to prevent over-fitting in our models (i.e. neural

networks) is to restrict the number of free parameters they have.

The simplest way we can do this is to restrict the number of hidden units, as this will

automatically reduce the number of weights.  We can use some form of validation or

cross-validation scheme to find the best number for each given problem.

An alternative is to have many weights in the network, but constrain certain groups of

them to be equal.  If there are symmetries in the problem, we can enforce hard weight

sharing by building them into the network in advance.  In other problems we can use

soft weight sharing where sets of weights are encouraged to have similar values by the

learning algorithm.

One way to do this is to add an appropriate term to the error/cost function.  This method

can then be seen as a particular form of regularization.
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Stopping Training Early

Neural networks are often set up with more than enough parameters for over-fitting to

occur, and so other procedures have to be employed to prevent it.

For the iterative gradient descent based network training procedures we have considered

(such as batch back-propagation and conjugate gradients), the training set error will

naturally decrease with increasing numbers of epochs of training.

The error on the unseen validation and testing data sets, however, will start off

decreasing as the under-fitting is reduced, but then it will eventually begin to increase

again as over-fitting occurs.

The natural solution to get the best generalization, i.e. the lowest error on the test set, is

to use the procedure of early stopping.  One simply trains the network on the training

set until the error on the validation set starts rising again, and then stops.  That is the

point at which we expect the generalization error to start rising as well.
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Practical Aspects of Stopping Early

One potential problem with the idea of stopping early is that the validation error may go

up and down numerous times during training.  The safest approach is generally to train

to convergence (or at least until it is clear that the validation error is unlikely to fall

again), saving the weights at each epoch, and then go back to weights at the epoch with

the lowest validation error.

There is an approximate relationship between stopping early and a particular form of

regularization which indicates that it will work best if the training starts off with very

small random initial weights.

There are general practical problems concerning how to best split the available training

data into distinct training and validation data sets.  For example:  What fraction of the

patterns should be in the validation set?  Should the data be split randomly, or by some

systematic algorithm?  As so often, these issues are very problem dependent and there

are no simple general answers.
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Regularization

The general technique of regularization encourages smoother network mappings by

adding a penalty term Ω to the standard (e.g. sum squared error) cost function

E Ereg sse= + λΩ

where the regularization parameter λ controls the trade-off between reducing the error

Esse and increasing the smoothing.  This modifies the gradient descent weight updates so
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For example, for the case of soft weight sharing we can use the regularization function
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in which the 3M parameters αj, µj, σj are optimised along with the weights.
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Weight Decay

One of the simplest forms of regularization has a regularization function which is just

the sum of the squares of the network weights (not including the thresholds):
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In conventional curve fitting this regularizer is known as ridge regression.  We can see

why it is called weight decay when we observe the extra term in the weight updates:
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In each epoch the weights decay in proportion to their size, i.e. exponentially.

Empirically, this leads to significant improvements in generalization.  This is because

producing over-fitted mappings requires high curvature and hence large weights.

Weight decay keeps the weights small and hence the mappings are smooth.
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Adding Noise / Jittering

Adding noise or jitter to the inputs during training is also found empirically to improve

network generalization.  This is because the noise will ‘smear out’ each data point and

make it difficult for the network to fit the individual data points precisely, and

consequently reduce over-fitting.

Actually, if the added noise is ξ with variance λ, the error function can be written:
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which is a standard Tikhonov regularizer minimising curvature.  The gradient descent

weight updates can then be performed with an extended back-propagation algorithm.
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Which is the Best Approach ?

To get an optimal balance between bias and variance, we need to find a way of

optimising the effective complexity of the model, which for neural networks means

optimising the effective number of adaptable parameters.

One way to optimise that number is to use the appropriate number of connection

weights, which can easily be adjusted by changing the number of hidden units.  The

other approaches we have looked at can all be seen to be effectively some form of

regularization, which involves adding a penalty term to the standard gradient descent

error function.  The degree of regularization, and hence the effective complexity of the

model, is controlled by adjusting the regularization scale λ.

In practice, we find the best number of hidden units, or degree of regularization, using a

validation data set or the procedure of cross-validation.  The approaches all work well,

and which we choose will ultimately depend on which is most convenient for the

particular problem in hand.  Unfortunately, there is no overall best approach!
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 Overview and Reading

1. We began by recalling the aim of good generalization.

2. Then the ideas of validation and cross-validation were introduced as

convenient methods for estimating generalization using only the

available training data.

3. We then went through the main approaches for improving generalization:

limiting the number of weights, weight sharing, stopping training early,

regularization, weight decay, and adding noise to the inputs.

4. As usual, we concluded that there was no generally optimal approach.

Reading

1. Bishop: Sections 9.2, 9.3, 9.4, 9.8

2. Haykin: Sections 4.12, 4.14

3. Gurney: Section 6.10


