e

A S S R L S S

Neural Computation : Revision Lecture

© John A. Bullinaria, 2015

Module Aims and Learning Outcomes

Biological and Artificial Neural Networks

Training Methods for Multi Layer Perceptrons

Bias + Variance and Improving Generalization
Applications of Multi-Layer Perceptrons

Recurrent Neural Networks

Radial Basis Function Networks

Self Organizing Maps and Learning Vector Quantization

Committee Machines and Evolutionary Optimization

L1 : Module Aims and Learning Outcomes

Aims

1. Introduce some of the fundamental techniques and principles of neural computation.

2. Investigate some common neural-based models and their applications.

3. Present neural network models in the larger context of state-of-the-art techniques of

automated learning.

Learning Outcomes

1.
2.

Understand the relationship between real brains and simple artificial neural network models.

Describe and explain some of the principal architectures and learning algorithms of neural

computation.
Explain the learning and generalization aspects of neural computation.

Demonstrate an understanding of the benefits and limitations of neural-based learning

techniques in context of other state-of-the-art methods of automated learning.

Apply neural computation algorithms to specific technical and scientific problem. [[L4 only]|

RL-2

Why are Artificial Neural Networks worth studying?

Even though individual artificial neurons are very simple, networks of them can be shown

to be extremely powerful computational devices (Turing equivalent, universal computers).

Very simple ANNSs can be set up to learn and generalize well — so they can perform difficult

tasks without the need for enormous feats of programming.
Their massive parallelism can make them very efficient.

They are particularly fault tolerant — this is equivalent to the “graceful degradation” found

in biological brains.

They are very noise tolerant — so they can cope with situations where normal symbolic

(rule-based) systems would have difficulty.

In principle, they can do anything a symbolic/logic system can do, and a lot more. Though,

in practice, getting them to do it can be rather difficult...

They are useful for both the scientific goal of modelling how real brains work, and the

engineering goal of building efficient systems for real world applications.

RL-3

L2 : Biological Neural Networks

1.
dendrites
a=on hillock 0N
il i | axon: 2+
nucleus f / \ / 7hrfm:h

p myelin sheath nodes of ranvier

! itochondria 3.
axon temminal
4,
presynaptic . .
synaptic postsynaptic

membrane clert memhbrane 5

RL-4

The majority of neurons encode their
outputs or activations as a series of
brief electical pulses (i.e. spikes or
action potentials).

Dendrites are the receptive zones that
receive activation from other neurons.

The cell body (soma) of the neuron’s
processes the incoming activations and
converts them into output activations.

Axons are transmission lines that send
activation to other neurons.

Synapses allow weighted transmission
of signals (using neurotransmitters)
between axons and dendrites to build
up large neural networks.

Rate Coding versus Spike Time Coding

When sufficient input is received, the neuron generates an action potential or ‘spike’ (i.e. it
‘fires’). In biological networks, the individual spike timings are often important. So

“spike time coding’ is the most realistic representation for artificial neural networks.

However, averages of spike rates across time or populations of neurons carry a lot of the

useful information, and so “rate coding’ is a useful approximation.

Spike coding is more powerful, but the computer models are much more complicated and

more difficult to train.

Rate coding blurs the information coded in individual neurons, but usually leads to simpler
models with differentiable outputs, which is important for generating efficient learning

algorithmes.

Sigmoid shaped activation functions in the rate coding approach follow from the

cumulative effect of Gaussian distributed spikes.

RL-5

L.3 : Networks of McCulloch-Pitts Neurons

Artificial neurons have the same basic components as biological neurons. The simplest

ANNs consist of a set of McCulloch-Pitts neurons labelled by indices k, i, j and activation

flows between them via synapses with strengths w;; w,:

il’lli _________

. .~

Iy

.~ -

neuron I ..
synapse ij

out; = step(zinki -0.)

k=1

Iy, = OUt,wy;

RL-6

neuron j

lnl:]' = OI/ltl Wl:]'

Implementation of Simple Logic Gates

We have inputs in; and output out = step(w, in,; + w, in, — 6) and need to solve for w,and 6:

AND 05” w,0 +w,0 — 0 < 0
0 1 0 w, 0 +w,1 — 0 <0
1 0 O w, 1 +w,0 — 0 <0 1 1
1 1 1 w, 1 +w,1 — 6>0
6>0 ,w,,w, <0, w;+w,>0
in, in, out
XOR 0O 0 O w,0 +w,0 - 60 <0
0 1 1 w, 0 +w,1 — 60 >0 \
1 0 1 w, 1 +w,0 — 60 >0 '
I 1 0 w, 1 +w,1 — 0 <0

6>0 ,w,,w,>0, w,+w,<0

Solutions only exist for linearly separable problems, but since the simple gates (AND, OR,

NOT) can be linked together to solve arbitrarily complex mappings, they are very powerful.

RL-7

Building an Artificial Neural Network

Formulating neural network solutions for particular problems is a multi-stage process:

1.

5.
6.
7
8

Understand and specify the problem in terms of inputs and required outputs, e.g. outputs

are binary class vectors for classification or real valued vectors for regression.
Take the simplest form of network you think might be able to solve the problem.

Try to find appropriate connection weights (including neuron thresholds) so that the

network produces the right outputs for each input in its training data.

Make sure that the network works on its training data, and test its generalization

performance by checking how well it works on previously unseen festing data.
If the network doesn’t perform well enough, go back to stage 3 and try harder.

If the network still doesn’t perform well enough, go back to stage 2 and try harder.
If the network still doesn’t perform well enough, go back to stage 1 and try harder.

Either the problem is solved or admit defeat — move on to the next problem.

After training, the network is usually expected to generalize well, i.e. produce appropriate

outputs for fest patterns it has never seen before.

RL-8

L4 : The Perceptron and the Perceptron Learning Rule

An arrangement of one input layer of activations feeding forward to one output layer of

McCulloch-Pitts neurons is known as a simple Perceptron:

Network Activations:

out ; = step(z inw; -6))

i=1

Perceptron Learning Rule:

wi(t+1) =w; (1) +Aw; (1)

Aw;; =n.(targ; —out;).in,

The Perceptron Learning Rule iteratively shifts around the weights w, and hence the
decision boundaries to give the target outputs for each input. If the problem is linearly

separable, the required weights will be found in a finite number of iterations.

RL-9

L5 : Learning by Gradient Descent Error Minimisation

The Perceptron learning rule is an algorithm that adjusts the network weights w; to minimise
the difference between the actual outputs out; and the target outputs farg?. We can quantify
this difference by defining an error function E(w,,,) over all output units j and all training
patterns p, e.g. Cross Entropy for classification or Sum Squared Error for regression:

E. = —E [targp.log(outp) + (1 - targp).log(l - ouzp)] , E., = %E E(z‘argj’ - ouz‘j’.’)2
p P J

It is the general aim of network learning to minimise the error by adjusting the weights w, .

Typically we make a series of small adjustments to the weights w,, — w,. + Aw, until the

error E(w,,) 1s ‘small enough’. We can determine which direction to change the weights in

by looking at the gradients (i.e. partial derivatives) of E with respect to each weight w,,.

Then the gradient descent update equation (with positive learning rate n) is

JE(w,)

Awy = -1
wy

which can be applied iteratively to minimise the error.

RL-10

L6 : Practical Considerations for Gradient Descent Learning

There a number of important practical/implementational considerations that must be taken
into account when training neural networks:

Do we need to pre-process the training data? If so, how?

How many hidden layers with how many hidden units do we need

Are some activation functions better than others?

How do we choose the initial weights from which we start the training?
Should we have different learning rates for the different layers?

How do we choose appropriate learning rates?

Do we change the weights after each training pattern, or after the whole set?

How do we avoid local minima in the error function?

o ©® 3 s D =

How do we avoid flat spots in the error function?

[Em—
<

How do we know when we should stop the training?
In general, the answers to these questions are highly problem dependent.

RL-11

L7 : Multi-Layer Perceptrons (MLPs)

Perceptrons specify linear decision boundaries. To deal with non-linearly separable problems
(such as XOR), one could use non-monotonic activation functions, but better results are found
by extending the simple Perceptron to a Multi-Layer Perceptron, which includes a least one

hidden layer of neurons with non-linear activations functions f{x) (such as sigmoids):

) _ £ (M), ,,(2)
noutputs out,” = f (Eoutj Wi
4 j
(2)
nhidden out = f (E out"w,")
A i
(1)
Wij
') _ .
ninputs out” = in,

Note that if the activation on the hidden layer were linear, the network would be equivalent to

a single layer network, and wouldn’t be able to cope with non-linearly separable problems.

RL-12

The Back-Propagation Learning Algorithm

By computing the necessary partial derivatives using the chain rule, we obtain the gradient
descent weight update equation for an N layer MLP. CE with sigmoid/soft-max output

activations or SSE with linear output activations both lead to the same:
Awy) = —n&E(w(n))/dek = T)E delta.” .out,""

(N)

with output error signal delta, ~ simply the difference between the target and actual outputs:

(N)

delta, (targk —out."))

and these error signals propagate back to give the deltas at earlier layers n :

delta” = (Edelta("”) ("+D) (Eout(" D (")) (Edelta('m) Wl(£+l)) outy” (1 out("))

which includes the derivative of the sigmoidal hidden unit activation function f. This is the

famous Back-Propagation learning algorithm for MLPs.

RL-13

Training a Two-Layer MLP Network

The procedure for training a two layer MLP is now quite straight-forward:

1.

6.

Take the set of training (input — output) patterns the network is required to learn
{inf,outf:i=1 ... ninputs, j=1 ... noutputs,p =1 ... npatterns} .

Set up a network with ninputs input units fully connected to nhidden hidden units via

(1)

connections with weights w;;”,

which in turn are fully connected to noutputs output
units via connections with weights wﬁ.,f).

Generate random initial connection weights, e.g. from the range [—smwt, +smwt]

Select an appropriate error function E(w](.Z)), e.g. CE or SSE, and learning rate 7.
Apply the gradient descent weight update equation Awﬁ,’j) = —n&E(wEZ)) / &WEZ) to each
weight wﬁ,’? for each training pattern p. One set of updates of all the weights for all the
training patterns is called one epoch of training.

Repeat step 5 until the network error function is ‘small enough’.

The extension to networks with more hidden layers is straightforward.

RL-14

L8 : Improvements Over Back-Propagation

We can smooth out back-propagation updates by adding a momentum term a.Aw;(L?) (t-1) so
Aw!(t) = ndelta™ (t).out," " () + a.Aw!"(t - 1) .

Another way to speed up learning is to compute good step sizes at each step of gradient

descent by doing a line search along the gradient direction to give the best step size(t), so
A (n) ol . (1)
wy, (1) = size(t).dir,; " (t)

There are efficient parabolic interpolation methods for doing the line searches.

A problem with using line searches on true gradient descent directions is that the subsequent
steps are orthogonal, and this can cause unnecessary zig-zagging through weight space. The
Conjugate Gradients learning algorithm computes better directions dir;fl")(t) than true
gradients and then steps along them by amounts determined by line searches. This is

probably the best general purpose approach to MLP training, though complex to implement.

RL-15

L9 : Bias and Variance Decomposition

If we define the expectation or average operator £, which takes the ensemble average over

all possible training sets D, then some rather messy algebra allows us to show that:

fD[(f[y | x;]1-net(x; ,W,D))z]

= (fD[net(x,- W, D)]— Ely Ixi])2 + Z'D[(net(xi SW.,D) - fD[net(xi W, D)])2]

= (bias)” + (variance)

This expected generalization error consists of two positive components:

(bias)® : the difference between the average network output E ,[net(x; ,W,D)] and the
regression function g(x;) = E[ylx;]. This can be viewed as the approximation error.

(variance) : the variance of the approximating function net(x; ,W, D) over all the training
sets D. It represents the sensitivity of the results on the particular choice of data D.

In practice there will always be a trade-off to get the best generalization.

RL-16

L.10 : Improving Generalization

For networks to generalize well they need to avoid both under-fitting of the training data (high

statistical bias) and over-fitting of the training data (high statistical variance).

There are a number of approaches to improving generalization — we can:

1. Arrange to have the optimum number of free parameters (independent connection

weights) in the network (e.g. by fixing the number of hidden units, or weight sharing).
2. Stop the gradient descent training process just before over-fitting starts.

3. Add a regularization term AQ to the error function to smooth out the mappings that are

learnt, e.g., the regularizer Q ="/, (w;)> which corresponds to weight decay.

4. Add noise (or jitter) to the training patterns to smooth out the data points.

We can use a validation set or cross-validation as a way of estimating the generalization
using only the available training data. This provides a way of optimizing any of the above

procedures (e.g., the regularization parameter A) to improve generalization.

RL-17

L.11: Applications of Multi-Layer Perceptrons

Neural network applications fall into two basic types:

Brain modelling The scientific goal of building models of how real brains work. This can
potentially help us understand the nature of human intelligence, formulate better

teaching strategies, or better remedial actions for brain damaged patients.

Artificial System Building The engineering goal of building efficient systems for real
world applications. This may make machines more powerful, relieve humans of

tedious tasks, and may even improve upon human performance.

We often use exactly the same networks and techniques for both. Frequently progress is
made when the two approaches are allowed to feed into each other. There are fundamental
differences though, e.g. the need for biological plausibility in brain modelling, and the need
for computational efficiency in artificial system building. Simple neural networks (MLPs) are
surprisingly effective for both. Brain models need to cover Development, Adult Performance,
and Brain Damage. Real world applications include: Data Compression, Time Series

Prediction, Speech Recognition, Pattern Recognition and Computer Vision.

RL-18

.12 : Recurrent Network Architectures

The fundamental feature of a Recurrent Neural Network (RNN) is that the network contains
at least one feed-back connection, so the activations can flow round in a loop. That enables
the networks to do temporal processing and learn sequences, e.g., perform sequence

recognition/reproduction or temporal association/prediction.

Recurrent neural networks are fully fledged dynamical systems. One common type consists
of a standard Multi-Layer Perceptron (MLP) plus added loops. This can exploit the powerful
non-linear mapping capabilities of the MLP, and also have some form of memory. Others
have more uniform structures, potentially with every neuron connected to all the others, and

may have stochastic activation functions, e.g. Hopfield Networks and Boltzmann Machines.

For simple architectures and deterministic activation functions, learning can be achieved
using similar gradient descent procedures to those leading to the back-propagation algorithm
for feed-forward networks. Unfolding a recurrent network over time gives a feed-forward
network with shared weights, and truncating that gives an Elman Network. When the

activations are stochastic, simulated annealing approaches may be more appropriate.

RL-19

L.13 : Radial Basis Function (RBF) Mappings

These aim to learn from N data points in a multi-dimensional space with D dimensional inputs
x” ={x:i=1,...,D} and corresponding K dimensional target outputs t” ={t/ : k =1,...,K}.
The output data is assumed to be given by some underlying functions g, (x) plus random

noise. The goal is to approximate the g, (x) with functions y,(x) of the form

M
Vi(X) = Ewkj¢j(x)
j=0
There are good computational reasons to use Gaussian radial basis functions

oo B0
J - p 20 '2
j
in which we have basis centres {u;} and widths {0}. It M = N we can use matrix inversion
techniques to perform exact interpolation. But this would be computationally inefficient and

not give good generalization. It is better to take a different approach with M << N.

RL-20

L.14,15 : RBF Networks and Their Training

We can cast the RBF mapping into a form that looks like a neural network:

outputs y,

M) basis functions ¢.(x;, w;, 0

inputs Xx;

First the basis centres {u;} and widths {0} can be obtained by unsupervised methods, e.g.,
Random Training Data Points or K-Means Clustering. The output weights {w,;} can then be
found analytically by solving a set of linear equations. This makes the training very quick,

with no difficult to optimise learning parameters, which is a major advantage over MLPs.

RL-21

L.16,17 : The Kohonen Self Organizing Map (SOM)

The SOM is an unsupervised training system based on competitive learning. The aim is to
learn a feature map from a spatially continuous input space, in which our input vectors live,
to a low dimensional spatially discrete output space formed by arranging the computational

neurons into a grid that is fully connected to all the input layer neurons.

Computational layer

© o0 o o O Input layer

This provides an approximation of the input space with dimensional reduction, topological

ordering, density matching, and feature selection.

RL-22

Components of Self Organization

The self-organization process has four major components:
Initialization: All the connection weights are initialized with small random values.

Competition: For each input pattern, each output nodes compute their respective values of
a discriminant function which provides the basis for competition. Simple Euclidean
distance between the input vector and the weight vector for each output node is suitable.

The particular neuron with the smallest distance is declared the winner.

Cooperation: The winning neuron determines the spatial location of a ropological
neighbourhood of excited neurons, thereby providing the basis for cooperation among

neighbouring neurons.

Adaptation: The excited neurons increase their individual values of the discriminant
function in relation to the input pattern through suitable adjustment to the associated
connection weights, such that the response of the winning neuron to the subsequent

application of a similar input pattern is enhanced.

RL-23

The SOM Algorithm

The self organising process is implemented in the SOM algorithm:

1.

2.

3.

Initialization — Choose random values for the initial weight vectors w,.
Sampling — Draw a sample training input vector X from the input space.

Matching — Find the winning neuron /(x) that has weight vector closest to the input

. D 2
vector, 1.e. the minimum value of the discriminant function d;(x) = Ei=1(xi -W

Updating — Apply the weight update equation Aw; =n(?) T; ;x(t) (x; —w;;) where
T; 1x)(8) = exp(=S$; yxy/ 2(72(t)) is the Gaussian topological neighbourhood around the
winning node /(x) defined by the distance §; ;, between nodes j and /(x) on the output
grid. of(t)is the Gaussian’s width and n(z) is the learning rate, both of which generally

decrease with time (e.g. exponentially).

Continuation — keep returning to step 2 until the feature map stops changing.

RL-24

L.18 : Learning Vector Quantization (LVQ)

The LVQ algorithm is a supervised process which starts from a trained SOM with input
vectors {x} and weights (i.e. Vorronoi vectors) {w;}. The classification labels of the inputs
give the best classification for the nearest neighbour cell (i.e. Voronoi cell) for each w;. It is
unlikely that the cell boundaries (i.e. Voronoi Tesselation) coincide with the classification

boundaries. The LVQ algorithm attempts to correct this by shifting the boundaries:

1. If the input x and the associated Voronoi vector w,,, (i.e. the weight of the winning
output node /(x)) have the same class label, then move them closer together by
AW ;5 (1) = B(t)(X — W () as in the SOM algorithm.

2. If the input x and associated Voronoi vector w,,, have the different class labels, then
move them apart by Aw ;,,(¢) = = B(1)(X = W (£)).

3. Voronoi vectors w; corresponding to other input regions are left unchanged with
Aw (1) =0.

where () is a learning rate that decreases with the number of iterations/epochs of training.

In this way we end up with better classification than by the SOM alone.

RL-25

L.19 : Committee Machines

Committee machines are combinations of two or more neural networks that can be made to

perform better than individual networks. There are two major categories:

1. Static Structures

The outputs of several constituent networks (experts) are combined by a mechanism that

does not involve the input signal, hence the designation static. Examples include

e FEnsemble averaging, where the constituent outputs are linearly combined.

* Boosting, where weak learners are combined to give a strong learner.

2. Dynamic structures

The input signal is directly involved in actuating the mechanism that integrates/combines

the constituent outputs, hence the designation dynamic. The main example is

e Mixtures of experts, where the constituent outputs are non-linearly combined by some

form of gating system (which may itself be a neural network).

RL-26

L20 : Evolutionary Optimization

Rigorous statistical approaches are required to present results and perform model selection.
The various neural network parameter values in biological systems have evolved so that they
perform well. So, using simulated evolution by natural selection to automate model selection

and generate high performance neural networks is becoming increasingly popular.

One takes a whole population of neural networks, each specified by some genotypic encoding
of its architecture and other parameters. Each individual network is then tested on its chosen
task and its fitness determined (e.g., estimated generalization performance or learning speed).
The best/fittest individuals are then selected to be the parents of the next generation, with the

children generated by suitable cross-over and mutation at the genotypic level.

The obvious thing to evolve is the neural network weights, but this is hard to do well, and in
real brains they are not set innately, but by lifetime learning. Evolving other neural network
parameters (numbers of hidden units, initial weight range p, learning rate 17, momentum o,

regularization parameter A, epochs, etc.) consistently gives good results.

RL-27

Overview and Reading

1. The module appears to have achieved its aims and learning outcomes.

2. We began by seeing how we could take simplified versions of the neural
networks found in real brains to produce powerful computational devices.

3. We have seen how Multi-Layer Perceptrons, Recurrent Neural Networks,
Radial Basis Function Networks, Kohonen Self Organizing Maps, Committee
Machines and Evolving Neural Networks can be set up and trained.

4. We have studied the issues underlying learning and generalization in neural
networks, and how we can improve them both.

5. Along the way we have considered the various implementational and practical

issues that might complicate our endeavours.

Reading

1. Your lecture notes!

RL-28

