
Learning in Multi-Layer Perceptrons - Back-Propagation

Neural Computation : Lecture 7
© John A. Bullinaria, 2015

1. Linear Separability and the Need for More Layers

2. Notation for Multi-Layer Networks

3. Multi-Layer Perceptrons (MLPs)

4. Learning in Multi-Layer Perceptrons

5. Choosing Appropriate Activation and Cost Functions

6. Deriving the Back-Propagation Algorithm

7. Further Practical Considerations for Training MLPs
(8) How Many Hidden Layers and Hidden Units?
(9) Different Learning Rates for Different Layers?

L7-2

 Linear Separability and the Need for More Layers

We have already shown that it is not possible to find weights which enable Single Layer
Perceptrons to deal with non-linearly separable problems like XOR:

However, Multi-Layer Perceptrons (MLPs) are able to cope with non-linearly separable
problems. Historically, the problem was that there were no known learning algorithms
for training MLPs. Fortunately, it is now known to be quite straightforward.

in1

in2

⇒
e.g. OR AND

XOR

L7-3

Notation for Multi-Layer Networks

Dealing with multi-layer networks is easy if a sensible notation is adopted. We simply
need another label (n) to tell us which layer in the network we are dealing with:

Each unit j in layer n receives activations outi
(n−1)wij

(n) from the previous layer of
processing units and sends activations out j

(n) to the next layer of units.

€

out j
(n) = f (n) outi

(n−1)wij
(n)

i
∑

 outi

(n−1)wij
(n)

Network
Layer n

j

L7-4

Multi-Layer Perceptrons (MLPs)

Conventionally, the input layer is layer 0, and when we talk of an N layer network we
mean there are N layers of weights and N non-input layers of processing units. Thus a
two layer Multi-Layer Perceptron takes the form:

It is clear how we can add in further layers, though for most practical purposes two
layers will be sufficient. Note that there is nothing stopping us from having different
activation functions f(n)(x) for different layers, or even different units within a layer.

ninputs

nhidden

noutputs

outi
(0) = ini€

out j
(1) = f (1)(outi

(0)

i
∑ wij

(1))
€

outk
(2) = f (2)(out j

(1)

j
∑ wjk

(2))

wij
(1)

wjk
(2)

L7-5

The Need For Non-Linearity

We have noted before that if we have a regression problem with non-binary network
outputs, then it is appropriate to have a linear output activation function. So why not
simply use linear activation functions on the hidden layers as well?

With activation functions f(n)(x) at layer n, the outputs of a two-layer MLP are

outk
(2) = f (2) out j

(1).wjk
(2)

j
∑

 = f (2) f (1) ini

i
∑ wij

(1)

 .wjk

(2)

j
∑

so if the hidden layer activations are linear, i.e. f(1)(x) = x, this simplifies to

outk
(2) = f (2) ini .

i
∑ wij

(1)wjk
(2)

j
∑

But this is equivalent to a single layer network with weights wik = wij(1)w jk
(2)

j∑ and we
know that such a network cannot deal with non-linearly separable problems.

L7-6

Non-linear Activation/Transfer Functions

We have seen that the standard logistic sigmoid function is a convenient differentiable
non-linear activation/transfer function that performs a smooth thresholding suitable for
artificial neural networks, but are there other possibilities?

The standard logistic sigmoid function ranges from 0 to 1. There is some empirical
evidence that an anti-symmetric threshold function, i.e. one that satisfies f(–x) = –f(x),
enables the gradient descent algorithm to learn faster. The hyperbolic tangent is simply
related to the standard sigmoid and has that property:

f(x) = tanh(x) = 2 Sigmoid(2x) – 1 f(–x) = –f(x)

and, like the standard sigmoid function, has a particularly simple derivative:

f′(x) = 1 – f(x)2

Obviously, this will not be appropriate for outputs that are required to be probabilities,
but it is a useful alternative to use for hidden unit activations.

L7-7

Learning in Multi-Layer Perceptrons

Training N-layer neural networks follows the same ideas as for single layer networks.
The network weights wij

(n) are adjusted to minimize an output cost function, e.g.

€

ESSE = 1
2 targj

p − out j
(N) p()

j
∑

2

p
∑

or

€

ECE = − targj
p .log out j

(N) p() + (1− targj
p).log 1− out j

(N) p()[]
j
∑

p
∑

and again we can do this by a series of gradient descent weight updates

€

Δwkl
(m) = −η

∂E({wij
(n)})

∂wkl
(m)

Note that it is only the outputs out j
(N) of the final layer that appear in the output error

function E. However, the final layer outputs will depend on all the earlier layers of
weights, and the learning algorithm will adjust all of them too. The learning algorithm
automatically adjusts the outputs out j

(n) of the earlier (hidden) layers so that they form
appropriate intermediate (hidden) representations.

L7-8

 Training a Multi-Layer Perceptron

Training for multi-layer networks is similar to that for single layer networks:

1. Take the set of training patterns you wish the network to learn

{ini
p, targj

p : i = 1 … ninputs, j = 1 … noutputs, p = 1 … npatterns} .

2. Set up the network with ninputs input units, N-1 hidden layers of nhidden(n) non-
linear hidden units, and noutputs output units in layer N. Fully connect each layer
(n) to the previous layer (n-1) with connection weights

€

wij
(n) .

3. Generate random initial weights, e.g. from the range [–smwt, +smwt]

4. Select an appropriate error function E(wjk
(n)) and learning rate η.

5. Apply the weight update Δwjk
(n) = −η∂E(wjk

(n)) ∂wjk
(n) to each weight wjk

(n) for each
training pattern p. One set of updates of all the weights for all the training
patterns is called one epoch of training.

6. Repeat step 5 until the network error function is “small enough”.

To be practical, algebraic expressions need to be derived for the weight updates.

L7-9

Choosing Appropriate Activation and Cost Functions

We already know from the maximum-likelihood consideration of single layer networks
what output activation and cost functions should be used for particular problem types.
We have also seen that non-linear hidden unit activations are needed, such as sigmoids.
So we can summarize the required network properties:

Regression/ Function Approximation Problems

SSE cost function, linear output activations, sigmoid hidden activations

Classification Problems (2 classes, 1 output)

CE cost function, sigmoid output and hidden activations

Classification Problems (multiple-classes, 1 output per class)

CE cost function, softmax outputs, sigmoid hidden activations

In each case, application of the gradient descent learning algorithm (by computing the
partial derivatives) leads to appropriate back-propagation weight update equations.

L7-10

Computing the Partial Derivatives for Regression

We use SSE and for a two layer network the linear final outputs can be written:

€

outk
(2) = out j

(1) .wjk
(2)

j
∑ = f ini

i
∑ wij

(1)

 .wjk

(2)

j
∑

We can then use the chain rules for derivatives, as for the Single Layer Perceptron, to
give the derivatives with respect to the two sets of weights whl

(1) and whl
(2) :

€

∂ESSE ({wij
(n)})

∂whl
(m) = − targk − outk

(2)()
k
∑ .

p
∑ ∂outk

(2)

∂whl
(m)

€

∂outk
(2)

∂whl
(2) = out j

(1) ∂wjk
(2)

∂whl
(2)

j
∑ = out j

(1) .δ jh .δkl
j
∑ = outh

(1) .δkl

€

∂outk
(2)

∂whl
(1) = ′ f ini

i
∑ wij

(1)

 . inm

m
∑

∂wmj
(1)

∂whl
(1)

 .wjk

(2)

j
∑ = ′ f ini

i
∑ wil

(1)

 .inh .wlk

(2)

L7-11

Deriving the Back Propagation Algorithm for Regression

All we now have to do is substitute our derivatives into the weight update equations

€

Δwhl
(2) = η targk − outk

(2)()
k
∑ .outh

(1) .δkl
p
∑ = η targl − outl

(2)().
p
∑ outh

(1)

€

Δwhl
(1) = η targk − outk

(2)()
k
∑ .

p
∑ ′ f ini

i
∑ wil

(1)

 .wlk

(2).inh

Then if the transfer function f(x) is a Sigmoid we can use f′(x) = f(x).(1 – f(x)) to give

€

Δwhl
(2) = η targl − outl

(2)().
p
∑ outh

(1)

€

Δwhl
(1) = η targk − outk

(2)()
k
∑ .

p
∑ wlk

(2) .outl
(1). 1− outl

(1)().inh

These equations constitute the Back-Propagation Learning Algorithm for Regression.

L7-12

 Computing the Partial Derivatives for Classification

Here we use CE and for a two layer network the sigmoidal final outputs can be written:

outk
(2) = f out j

(1).wjk
(2)

j
∑

 = f f ini

i
∑ wij

(1)

 .wjk

(2)

j
∑

We can then use the chain rules for derivatives, as for the Single Layer Perceptron, to
give the derivatives with respect to the two sets of weights whl

(1) and whl
(2) :

€

∂ECE ({wij
(n)})

∂whl
(m) = −

∂
∂outk

(2)
k
∑ targj .log out j

(2)() + (1− targj).log 1− out j
(2)()[]

j
∑ .

p
∑ ∂outk

(2)

∂whl
(m)

€

= −
targk
outk

(2) −
1− targk
1− outk

(2)

k
∑ .∂outk

(2)

∂whl
(m)

p
∑

€

= −
targk − outk

(2)

outk
(2).(1− outk

(2))

k
∑

p
∑ .∂outk

(2)

∂whl
(m)

and the derivatives of

€

outk
(2) are as in the SSE case with an extra f' at the output layer.

L7-13

Deriving the Back Propagation Algorithm for Classification

All we now have to do is substitute our derivatives into the weight update equations

€

Δwhl
(2) = η

targl − outl
(2)

outl
(2) .(1− outl

(2))

p
∑ . ′ f out j

(1)wjl
(2)

j
∑

 .outh

(1)

€

Δwhl
(1) = η

targk − outk
(2)

outk
(2) .(1− outk

(2))

k
∑ .

p
∑ ′ f out j

(1)w jk
(2)

j
∑

 . ′ f ini

i
∑ wil

(1)

 .wlk

(2) .inh

Then if the transfer function f(x) is a Sigmoid we can use f′(x) = f(x).(1 – f(x)) to give

€

Δwhl
(2) = η targl − outl

(2)().
p
∑ outh

(1)

€

Δwhl
(1) = η targk − outk

(2)()
k
∑ .

p
∑ wlk

(2) .outl
(1). 1− outl

(1)().inh

These equations constitute the Back-Propagation Learning Algorithm for Classification.
For multiple-class CE with Softmax outputs we get exactly the same equations.

L7-14

Simplifying the Computation

So we get exactly the same weight update equations for regression and classification.
When implementing the Back-Propagation algorithm it is convenient to define

€

deltal
(2) = targl − outl

(2)()

which is the output error. We can then write the weight update rules as

Δwhl
(2) = η deltal

(2)

p
∑ .outh

(1)

€

Δwhl
(1) = η deltak

(2) .wlk
(2)

k
∑

 .outl

(1) . 1− outl
(1)()

 .

p
∑ inh

So the weight whl
(2) between units h and l is changed in proportion to the output of unit

h and the delta of unit l. The weight changes at the first layer now take on the same
form as the final layer, but the “error” delta at each unit l is back-propagated from
each of the output units k via the weights wlk

(2) .

L7-15

Networks With Any Number of Hidden Layers

It is now becoming clear that, with the right notation, it is easy to extend the gradient
descent algorithm to work for any number of hidden layers. For both classification and
regression, if we use appropriate matching cost and activation functions we can define

€

deltal
(N) = targl − outl

(N)()

as the delta for the output layer, and then back-propagate the deltas to earlier layers using

€

deltal
(n) = deltak

(n+1) .wlk
(n+1)

k
∑

 . ′ f out j

(n−1)w jl
(n)

j
∑

Then each weight update equation can be written as:

Δwhl
(n) = η deltal

(n)

p
∑ .outh

(n−1)

Suddenly the Back-Propagation Algorithm looks very simple and easily programmable!

L7-16

Keeping Track of the Learning

The weight update equations don’t involve the output error/cost function, so there is no
necessity to compute it at each stage of training, though it might be helpful to use it to
keep track of how well the learning is progressing.

For regression problems, the SSE cost function itself is often the most useful measure of
performance. Sometimes it is helpful to divide that by the number of patterns and take
the square root to give the Root-Mean-Squared Error (RMSE). It might also help to
normalize the outputs by dividing by the target mean or standard-deviation.

For classification problems, it is usually more useful to know the percentage of training
patterns for which the network is predicting the correct class than what the CE is. For
multiple-class cases, one can just check how often the right output unit has the highest
activation, and for single output cases, one just needs to check how many outputs are on
the right side of 0.5. Alternatively, one can check what percentage of outputs are within
a particular tolerance (e.g., 0.1 or 0.2) of their targets.

L7-17

Practical Considerations for Back-Propagation Learning
Most of the practical considerations necessary for general Back-Propagation learning
were already covered when we talked about training single layer Perceptrons:

1. Do we need to pre-process the training data? If so, how?

2. How do we choose the initial weights from which the training is started?

3. How do we choose an appropriate learning rate η?

4. Should we change the weights after each training pattern, or after the whole set?

5. How can we avoid local minima in the error function?

6. How can we avoid flat spots in the error function?

7. How do we know when we should stop the training?

However, there are now two more important issues that were not covered before:

8. How many hidden layers with how many hidden units do we need?

9. Should we have different learning rates for the different layers?

L7-18

How Many Hidden Layers and Hidden Units?

The best number of hidden layers and hidden units depends on many factors, including:

1. The numbers of input and output units
2. The complexity of the function or classification to be learned
3. The amount of noise in the training data
4. The number and distribution of training data patterns
5. The type of hidden unit connectivity and activation functions
6. The training algorithm used

Too few hidden units will generally leave high training and generalisation errors due to
under-fitting. Too many hidden units will result in low training errors, but will make
the training unnecessarily slow, and will often result in poor generalisation unless some
other technique (such as regularization) is used to prevent over-fitting.

Virtually all “rules of thumb” you might hear about are actually nonsense. The sensible
strategy is to try a range of numbers of hidden units and see which works best.

L7-19

Different Learning Rates for Different Layers?

The gradient descent approach leads to the same learning rate η for each component of
the network, but there is empirical evidence that it helps to have different learning rates
ηX for the thresholds/biases and the real connection weights, and also for the different
layers. There are a number of factors that may affect the choices:

1. The required total weighted activations feeding into each node depend on the
target activations and also on their activation functions.

2. The weight changes are proportional to the activation magnitudes passing along
each connection and these will vary throughout the network.

3. The later network layers (nearer the outputs) tend to have larger local errors
(deltas) than the earlier layers (nearer the inputs).

In practice, it is often quicker to just use the same low learning rate for all the weights
and thresholds, rather than spending time trying to determine appropriate differences. A
very powerful approach is to use evolutionary algorithms to find the best learning rates,
and that frequently does result in massive differences across network components.

L7-20

Overview and Reading

1. We started by revisiting the concept of linear separability and the need
for multi-layered non-linear neural networks.

2. We then saw how the Back-Propagation Learning Algorithm for multi-
layered networks could be derived “easily” from the standard gradient
descent approach for both regression and classification problems.

3. We ended by looking at some practical issues that didn’t arise for the
single layer networks.

Reading

1. Gurney: Sections 6.1, 6.2, 6.3, 6.4
2. Haykin-2009: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8
3. Beale & Jackson: Sections 4.1, 4.2, 4.3, 4.4, 4.5
4. Bishop: Sections 4.1, 4.8
5. Callan: Sections 2.2, 2.3, 2.4, 2.5

