
Learning and Generalization in Single Layer Perceptrons

Neural Computation : Lecture 4
©  John A. Bullinaria, 2015

1. What Can Perceptrons do?

2. Decision Boundaries – The Two Dimensional Case

3. Decision Boundaries for AND, OR and XOR

4. Decision Hyperplanes and Linear Separability

5. Learning and Generalization

6. Training Networks by Iterative Weight Updates

7. Convergence of the Perceptron Learning Rule



 L4-2

What Can Perceptrons Do?

How do we know if a simple Perceptron is powerful enough to solve a given problem?
If it can’t even do XOR, why should we expect it to be able to deal with the aeroplane
classification example, or real world tasks that will be even more complex than that?

43210
0.0

0.2

0.4

0.6

0.8

Bomber
Fighter

Mass

Sp
ee

d

In this lecture, we shall look at the limitations of Perceptrons, and how we can find their
connection weights without having to compute and solve large numbers of inequalities.



 L4-3

Decision Boundaries in Two Dimensions

For simple logic gate problems, it is easy to visualise what the neural network is doing.
It is forming decision boundaries between classes.  Remember, the network output is:

€ 

out = step w1in1 +w2in2 −θ( )

The decision boundary (between  out = 0  and  out = 1) is at

w1in1 + w2in2 −θ = 0

i.e. along the straight line:

in2 =
−w1
w2

 

 
 

 

 
 in1 +

θ
w2

 

 
 

 

 
 

So, in two dimensions the decision boundaries are always straight lines.

θ

w1 w2

in2
in1



 L4-4

Decision Boundaries for AND and OR

We can easily plot the decision boundaries we found by inspection last lecture:

AND OR
w1 = 1,  w2 = 1,  θ = 1.5 w1 = 1,  w2 = 1,  θ = 0.5

The extent to which we can change the weights and thresholds without changing the
output decisions is now clear.

in1

in2

in1

in2



 L4-5

Decision Boundaries for XOR
The difficulty in dealing with XOR is beginning to look obvious.  We need two straight
lines to separate the different outputs/decisions:

There are two obvious remedies: either change the transfer function so that it has more
than one decision boundary, or use a more complex network that is able to generate
more complex decision boundaries.

in1

in2

in

out

⇒
e.g.



 L4-6

Decision Hyperplanes and Linear Separability

If we have two inputs, then the weights define a decision boundary that is a one
dimensional straight line in the two dimensional input space of possible input values.

If we have n inputs, the weights define a decision boundary that is an n–1 dimensional
hyperplane in the n dimensional input space:

w1in1 + w2in2 + ...+wninn −θ = 0

This hyperplane is clearly still linear (i.e., straight or flat or non-curved) and can still
only divide the space into two regions.  We still need more complex transfer functions,
or more complex networks, to deal with XOR type problems.

Problems with input patterns that can be classified using a single hyperplane are said to
be linearly separable.  Problems (such as XOR) which cannot be classified in this way
are said to be non-linearly separable.



 L4-7

General Decision Boundaries
Generally, we will want to deal with input patterns that are not binary, and expect our
neural networks to form complex decision boundaries, e.g.

We often also wish to classify inputs into many classes (such as the three shown here).

in1

in2

?

?



 L4-8

Learning and Generalization

A network will also produce outputs for input patterns that it was not originally set up to
classify (shown with question marks), though those classifications may be incorrect.

There are two important aspects of the network’s operation to consider:

Learning : The network must learn decision boundaries from a set of training
patterns so that these training patterns are classified correctly.

Generalization : After training, the network must also be able to generalize, i.e.
correctly classify test patterns it has never seen before.

Usually we want the neural network to learn in a way that produces good generalization.

Sometimes, the training data may contain errors (e.g., noise in the experimental
determination of the input values, or incorrect classifications).  In this case, learning the
training data perfectly may make the generalization worse.  There is an important trade-
off between learning and generalization that arises quite generally.



 L4-9

Generalization in Classification
Suppose the task of the neural network is to learn a classification decision boundary:

The aim is to get the network to generalize to classify new inputs appropriately.  If we
know that the training data contains noise, we don’t necessarily want the training data to
be classified totally accurately, as that is likely to reduce the generalization ability.

in1

in2

in1

in2



 L4-10

Generalization in Function Approximation
Suppose we wish to recover a function for which we only have noisy data samples:

We can expect the neural network output to give a better representation of the under-
lying function if its output curve does not pass through all the data points.  Again,
allowing a larger error on the training data is likely to lead to better generalization.

out

in



 L4-11

Training a Neural Network

Whether the neural network is a simple Perceptron, or a much more complicated multi-
layer network with special activation functions, we need to develop a systematic
procedure for determining appropriate connection weights.

The general procedure is to have the network learn the appropriate weights from a
representative set of training data.

For all but the simplest cases, however, direct computation of the weights is intractable.

Instead, a good all-purpose process is to start off with random initial weights and adjust
them in small steps until the required outputs are produced.

We shall first look at a brute force derivation of such an iterative learning algorithm for
simple Perceptrons.  Then, in later lectures, we shall see how more powerful and
general techniques can easily lead to learning algorithms which will work for neural
networks of any specification we could possibly dream up.



 L4-12

Perceptron Learning

For simple Perceptrons performing classification, we have seen that the decision
boundaries are hyperplanes, and we can think of learning as the process of shifting
around the hyperplanes until each training pattern is classified correctly.

Somehow, we need to formalise that process of “shifting around” into a systematic
algorithm that can easily be implemented on a computer.

The “shifting around” can conveniently be split up into a number of small steps.

If the network weights at time  t  are  wij(t) , then the shifting process corresponds to
moving them by a small amount  Δwij(t)  so that at time  t+1  we have weights

wij (t +1) =  wij (t ) +  Δwij (t)

It is convenient to treat the thresholds as weights, as discussed previously, so we don’t
need separate equations for them.



 L4-13

Formulating the Weight Changes

Suppose the target output of unit j is  targj  and the actual output is  outj = step(∑ ini wij),
where  ini  are the activations of the previous layer of neurons (i.e. the network inputs
for a Perceptron). Then we can just go through all the possibilities to work out an
appropriate set of small weight changes, and put them into a common form:

If           outj = targj            do nothing  Note  targj – outj = 0
so        wij  → wij

If           outj = 1      and      targj  = 0 Note  targj – outj = –1
then          ∑ ini  wij   is too large

first          when  ini = 1           decrease wij

so             wij  →   wij – η  = wij – η ini

and           when  ini = 0           wij   doesn’t matter
so             wij  →   wij – 0  = wij – η ini

so        wij  → wij – η ini



 L4-14

If           outj = 0      and      targj  = 1 Note  targj – outj = 1
then          ∑ ini wij   is too small

first          when  ini = 1           increase wij

so             wij  →   wij + η  = wij + η ini

and           when  ini = 0           wij   doesn’t matter
so             wij  →   wij – 0  = wij + η ini

so        wij  → wij + η ini

It has become clear that each case can be written in the form:

wij  → wij + η (targj – outj) ini

Δwij =  η (targj – outj) ini

This weight update equation is called the Perceptron Learning Rule.  The positive
parameter  η  is called the learning rate or step size – it determines how smoothly we
shift the decision boundaries.



 L4-15

Convergence of Perceptron Learning

The weight changes  Δwij  need to be applied repeatedly – for each weight  wij  in the
network, and for each training pattern in the training set.  One pass through all the
weights for the whole training set is called one epoch of training.

Eventually, usually after many epochs, when all the network outputs match the targets
for all the training patterns, all the  Δwij  will be zero and the process of training will
cease.  We then say that the training process has converged to a solution.

It is possible to prove that if there does exist a possible set of weights for a Perceptron
which solves the given problem correctly, then the Perceptron Learning Rule will find
them in a finite number of iterations.

Moreover, it can be shown that if a problem is linearly separable, then the Perceptron
Learning Rule will find a set of weights in a finite number of iterations that solves the
problem correctly.



 L4-16

Overview and Reading

1. Neural network classifiers learn decision boundaries from training data.

2. Simple Perceptrons can only cope with linearly separable problems.

3. Trained networks are expected to generalize, i.e. deal appropriately with
input data they were not trained on.

4. One can train networks by iteratively updating their weights.

5. The Perceptron Learning Rule will find weights for linearly separable
problems in a finite number of iterations.

Reading

1. Haykin-2009: Sections 1.1, 1.2, 1.3
2. Gurney: Sections 3.3, 3.4, 3.5, 4.1, 4.2, 4.3, 4.4.
3. Beale & Jackson: Sections 3.3, 3.4, 3.5, 3.6, 3.7
4. Callan: Sections 1.2, 1.3, 2.2, 2.3


