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What is a Committee Machine?

We have seen that it is standard practice with neural networks to train many different
candidate networks, and then to select and keep the best (for example, on the basis of
performance on an independent validation set) while discarding the rest.

There are two obvious disadvantages to this approach

1. All the effort involved in training the discarded networks is wasted.

2. Randomness of the noise in the data means the network with the best validation
set performance will not necessarily have the best test set performance.

These drawbacks can easily be overcome by combining the networks together to form a
committee machine.

The importance of this approach is that it can lead to significant improvements in the
performance on new data, with little extra computational effort.  In fact, the committee
can often do better than the best single constituent network in isolation.
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Types of Committee Machine
Committee machines can be conveniently classified into two major categories:

1. Static Structures

The outputs of several constituent networks are combined by a mechanism that does not
involve the input signal, hence the designation static.  Examples of this include

• Ensemble averaging, where the constituent outputs are linearly combined.

• Boosting, where weak learners are combined to give a strong learner.

2. Dynamic Structures

The input signal is directly involved in actuating the mechanism that integrates or
combines the constituent outputs, hence the designation dynamic.  The main example is

• Mixtures of experts, where the constituent outputs are non-linearly combined by
some form of gating system (which may itself be a neural network).
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Ensemble Averaging

An Ensemble Average consists of a set of trained networks (e.g., MLP, RBF, or both)
which share a common input x(p) for training pattern p, and whose individual outputs
yi(p) are somehow combined to produce an overall output y(p):

Usually, an output combination by simple linear averaging or voting proves sufficient.
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Theory Behind Ensemble Averaging

The underlying advantage of ensemble averaging is that differently trained networks will
tend to end up with different weights that correspond to different patterns of over-fitting,
and hence the average performance is likely to be better than that of any individual.

There are many possible ways to make the individuals different, and many possible
ways to combine their outputs.  However, simply starting a set of identical networks
from different initial weights and averaging their outputs tends to give good results.

A full bias + variance analysis shows that the ensemble average has the same bias as
the individual networks, but the variance is reduced.  So, overall, this results in better
generalization by the ensemble.

Studying the bias versus variance trade-off shows that the variance reducing ensemble
shifts the optimal bias too, so slight over-training of the individual networks allows the
ensemble to improve generalization even more.
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Boosting

Boosting is quite different to ensemble averaging.  The idea here is that a weak learning
algorithm, which performs only slightly better than guessing, can be boosted into a
strong learning algorithm by the operation of a committee machine.  This is a general
technique that can be used to improve the performance of any learning algorithm.

There are many variations, but the general approach of neural network based Boosting
Machines is to train constituent networks on data sets with different distributions.  In
practice, one trains a series of networks, each one of which concentrates more strongly
on the patterns learned incorrectly by the previous networks.  The final output can then
be obtained by combining the constituent outputs, e.g. by averaging.

The boosting algorithm can be applied repeatedly, and the error rate made arbitrarily
small.  There is still some debate about how well such systems can generalize.  Often,
with noisy data, any outliers can end up being given undue influence, and consequently
the performance of this approach will suffer unless care is taken to avoid that.
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Implementing Boosting
Boosting can be implemented in (at least) three fundamentally different ways:

1. Boosting by filtering

The training patterns are filtered by different versions of the weak learning algorithm.
This ends up with constituent networks trained on sub-sets of the large full training set
with different statistics.  This tends to be the most memory efficient approach.

2. Boosting by sub-sampling

The training set is of fixed size and patterns are re-sampled according to a given
probability distribution during training.  In effect, the patterns learnt incorrectly get
sampled more often in the next in a series of networks.  The error is calculated with
respect to the fixed training set.  AdaBoost is a well known example of this approach.

3. Boosting by re-weighing

The training set is fixed, but the weak learning algorithm can receive “weighted”
patterns.  The error is calculated with respect to the weighted examples.
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Mixtures of Experts

With Mixtures of Experts, the principle of divide and conquer distributes the given
learning task between a set of expert networks, and combines the constituent outputs to
produce an overall output that is superior to that of any single network acting on its own.

Here the inputs x(p) influence (or gate) the combination of the constituent outputs yi(p).
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Combining the Experts

Unlike with static committee machines, in a mixture of experts, each expert really can
concentrate on one part of the problem and ignore the rest.  The constituent outputs can
be combined more intelligently so that only the right (i.e. best) experts contribute to the
output for any given input pattern.

In the simple ensemble averaging approach we just take the average of the outputs

y(p) = 1
K
yi(p)

i=1

K

∑

whereas in the mixtures of experts approach the outputs are gated according to the inputs

y(p) = gi (x(p))yi(p)
i=1

K

∑

In this way the system can become truly modular with separate modules dealing with
different types of inputs, or even different tasks.
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Generating the Gates

In principle, the gates gi(x(p)) can be generated in any convenient manner.  In practice, it
is usual to have them produced as the output of a gating network, a simple single layer
network with one output for each expert.  The weights aji  for that network can then be
learned at the same time as the weights in the expert networks.  Normally, the gating
network outputs are computed using the softmax activation function

gi(p) = exp aijx j( p)
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because that automatically gives the gates useful probability-like properties:

0 ≤ gi(p) ≤1                          gi(p)
i=1

K

∑ = 1

One can then talk about weighted averages of the experts, and a gate of zero indicates the
expert has no influence on the overall output, while a gate of one means total control.
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Training a Mixture of Experts

Once all the gates and expert networks have been defined mathematically, it is easy to
define an output error function as with any other neural network.  For example

E(wjkl ,aij ) = 1
2 t(p) − y(p)( )2

p
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in which we have training patterns p, normal neural network weights wjkl for each expert
network j, weights aij for the gating network, and overall output target t(p).  We can then
use standard gradient descent weight updates to minimise the output error function

Δwmnp = −η
∂E(wjkl ,aij )
∂wmnp

            ,           Δamn = −η
∂E(wjkl ,aij )

∂amn

Note that one does not need to specify targets for the gates.  This mixtures of experts
approach is a special case of a more general Mixture Model approach that builds overall
probability distributions from a mixture of components.
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Overview and Reading

1. We began by studying the basic idea of a committee machine, and the
distinction between static and dynamic structures for those machines.

2. Then we looked at two types of static committee approaches: ensemble
averaging and boosting.  In each case, the outputs from the constituent
networks are combined with no reference to the inputs.

3. We ended by looking at a dynamic approach: mixtures of experts.
Here the outputs of expert networks are combined by gates which learn
appropriate dependencies on the inputs.  In this case, the committee can
learn to take a fully modular approach to its given tasks.

Reading

1. Haykin-1999: Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6
2. Bishop: Sections 9.6, 9.7


