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Introduction to Radial Basis Functions

The idea of Radial Basis Function (RBF) Networks derives from the theory of function

approximation. We have already seen how Multi-Layer Perceptron (MLP) networks

with a hidden layer of sigmoidal units can learn to approximate functions. RBF

Networks take a slightly different approach. Their main features are:

1.
2.

They are two-layer feed-forward networks.
The hidden nodes implement a set of radial basis functions (e.g. Gaussian functions).
The output nodes implement linear summation functions as in an MLP.

The network training is divided into two stages: first the “weights” from the input to

hidden layer are determined, and then the weights from the hidden to output layer.
The training/learning is very fast.

The networks are very good at interpolation.

Now we’ll spend the next three lectures studying the details...
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Regression, Curve Fitting, Interpolation

We have already studied the general problem of identifying an underlying function from a

set of noisy training data, and seen how Multi-Layer Perceptron networks can do that.

out

»in

This is called regression or curve fitting. The special case where the output function goes

exactly through all the data points is called exact interpolation.
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Exact Interpolation

Formally, the exact interpolation of a set of N data points in a multi-dimensional space
requires all the D dimensional input vectors x” ={x/ :i =1,..., D} to be mapped onto the

corresponding target outputs #”. The goal is to find a function f(x) such that
f&x"H=t" Vp=1,.,N

The radial basis function approach introduces a set of N basis functions, one for each
data point g, which take the form ¢(HX— XqH) where ¢(*) is some non-linear function
whose form will be discussed shortly. Thus the gth such function depends on the

distance HX —x?

, usually taken to be Euclidean, between x and x?. The output of the

mapping is then taken to be a linear combination of the basis functions, i.e.

XTI

The idea is to find the “weights” W, such that the function goes through the data points.
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Equations Specifying the Weights

It is easy to determine equations for the weights by combining the above equations:
N
Fxy= Y w,o(|x” - x[) = "
q=1

The distances HX” — X"H between data points p and ¢ are fixed by the training data, so

o = 95" ~x’))
is simply an array, or matrix, of training data dependent constant numbers, and the
weights W, are the solutions of the linear equations

N

Y4
E@pqwq =t

q=1

This can be written in matrix form by defining the vectors t={r"} and w={w,_}, and the

square matrix ® =@ ¢, so the equation for w simplifies to P w = t.
q pq q p
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Determining the Weights

It then follows that, provided the inverse of the matrix ® exists, any standard matrix

inversion technique can be used to give the required weights:
-1
w=0 't

in which the inverse matrix @ is defined by ®'® =1, where I is the identity matrix.
There is no need to know exactly how to compute such inverse matrices, just that efficient

computational algorithms and code exist that allow it to be done easily!

It can be shown that, for a large class of basis functions ¢(-), the matrix ® is indeed non-

singular, and therefore invertible, as long as the data points are distinct.

Once the weights are determined, we have a function f(x) that represents a continuous
differentiable surface that passes exactly through each data point. The Bias + Variance

Decomposition tells us that we need to be cleverer than that, but it is a good start...
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Commonly Used Radial Basis Functions

A range of theoretical and empirical studies have indicated that many properties of the
interpolating function are relatively insensitive to the precise form of the basis functions

¢(r). Some of the most commonly used basis functions are:

1. Gaussian Functions:

2

¢(r) = exp( —%) width parameter o > 0
o

2. Multi-Quadric Functions:

2\1/2
) parameter o > (

o(r) = (r2 +0

3. Generalized Multi-Quadric Functions:

¢(r) = (r2 + 02)/5 parameters 0>0,1>p>0
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Inverse Multi-Quadric Functions:
172
o(r) = (r2 + 02) parameter ¢ > 0

Generalized Inverse Multi-Quadric Functions:

¢(r) = (r2 + 02) * parameters o >0, oo >0

Thin Plate Spline Function:

$(r) =7 In(r)

Cubic Function:

¢(r)=r"
Linear Function:

¢p(r)=r
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Properties of the Radial Basis Functions

The Gaussian and Inverse Multi-Quadric Functions are localised in the sense that
¢(r)—=0 as [[—>o
but this is not strictly necessary. All the other functions above have the property

b= as |l

Note that in two or more dimensions, even the Linear Function ¢(r)=r = ||x— x” || s
non-linear in the components of x. In one dimension, it leads to the piecewise-linear

interpolating function which performs the simplest form of exact interpolation.

For neural network mappings, there are good reasons for preferring localised basis
functions. We shall focus our attention on Gaussian basis functions since, as well as
being localised, they have a number of other useful analytic properties. We can also see

intuitively how to set their widths ¢ and build up function approximations with them.
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Radial Basis Function Networks

You might think that what has just been described is not really a neural network. And a

lot of people would agree with you! However, we can see how to make it look like one:

output y

weights » @' 7

N) basis functions ¢(|[x? — xlI)

inputs Xx;

Note that the N training patterns {x7, #’} determine the weights directly. The hidden layer
to output weights multiply the hidden unit activations in the conventional manner, but the

input to hidden layer weights are used in a very different fashion.
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Example : Gaussian Radial Basis Functions

Suppose the chosen RBFs are Gaussians centred at the training data points {X"}. The

function approximation f(x) will then be built up as the weighted sum of Gaussians:

kx|

f(x)= 2w¢<x> Ew exp| -

207

in which o 1is the width of the Gaussians. If o is too small compared to the distance
between the data points, the approximation will consist of a narrow peak at each data
point, which is not what we want. Having o too large will be equally problematic. A

convenient compromise is given by the average data-point separation d,,,
o=2d,,

which ensures that on average the individual RBFs are neither too wide, nor too narrow,
for the given training data. However, even then the noise in the training data can still

lead to interpolation with massive errors in the function approximation.
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Exact Interpolation with Gaussians of Width o= 2d_,

1.0

)

0.5 |

N
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From: Neural Networks for Pattern Recognition, C. M. Bishop, Oxford University Press, 1995.
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Problems with Exact Interpolation

We have seen how it is possible to set up RBF networks to perform exact interpolation,

but there are two serious problems with these exact interpolation networks:

1. They perform poorly with noisy data

As has already been seen for Multi-Layer Perceptrons (MLPs), we do not usually want
the network’s outputs to pass through all the data points when the data is noisy, because

that will be a highly oscillatory function that will not provide good generalization.

2. They are not computationally efficient

The network requires one hidden unit (i.e., one basis function) for each training data
pattern, and so for large data sets the network will become very costly to evaluate. In

particular, the matrix inversion cost is typically O(N°).

With MLPs, we can improve generalization by using more training data. The opposite

happens in these RBF networks, and they take longer to compute as well.
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Improving RBF Networks

To get better results, one can start with the basic structure of the RBF networks that

perform exact interpolation, and improve upon them in a number of ways:

1. The number M of basis functions (hidden units) need not equal the number N

of training data points. In general, it is better to have M much less than V.

2. The centres of the basis functions do not need to be defined as the training data

input vectors. They can instead be determined by a training algorithm.

3. The basis functions need not all have the same width parameter o. These can

also be determined by a training algorithm.

4. Bias parameters can be introduced into the linear sum of activations at the
output layer, as in an MLP. These will compensate for the difference between
the average value over the data set of the basis function activations and the

corresponding average value of the targets.
Of course, these will make analysing and optimising the network much more difficult.
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The Improved RBF Network

When these changes are made to the exact interpolation formula, and the possibility of

more than one output unit is allowed, one arrives at the RBF network mapping

M
Vi(X) =wyo + E ij¢j(x)
=l

which can be simplified by introducing an extra basis function ¢, =1 to give
M
Vi(X) = Ewkj¢j(x)
i=0
For the case of Gaussian basis functions, the hidden unit activations are

2
x-u|
(X)=exp| —"———
¢;(x) = exp 207
which involve MxD basis centre parameters {|;} and M widths {0;}. Next lecture will
look at how to determine all the network parameters M, Wiis Wi, O j}.
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Overview and Reading

1. We began by outlining the basic properties of RBF networks.

2. We then looked at the idea of exact interpolation using RBFs, and went

through a number of common RBFs and their important properties.

3. Then we considered how to set up an RBF network to perform exact

interpolation and noted two serious problems with it.

4.  We ended by formulating a more useful form of RBF network.

Reading

1. Bishop: Sections 5.1,5.2,5.3,5.4

2. Haykin-2009: Sections 5.1, 5.2, 5.3, 5.4
3. Gurney: Section 10.4

4. Callan: Section 2.6

5. Hertz, Krogh & Palmer: Section 9.7
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