
Recurrent Neural Networks

Neural Computation : Lecture 12

© John A. Bullinaria, 2015

1. Recurrent Neural Network Architectures

2. State Space Models and Dynamical Systems

3. Backpropagation Through Time

4. The NARX Model

5. Computational Power of Recurrent Networks

6. Applications – Reading Model, Associative Memory

7. Hopfield Networks and Boltzmann Machines

L12-2

Recurrent Neural Network Architectures

The fundamental feature of a Recurrent Neural Network (RNN) is that the network
contains at least one feed-back connection, so the activations can flow round in a loop.
That enables the networks to do temporal processing and learn sequences, e.g., perform
sequence recognition/reproduction or temporal association/prediction.

Recurrent neural network architectures can have many different forms. One common
type consists of a standard Multi-Layer Perceptron (MLP) plus added loops. These can
exploit the powerful non-linear mapping capabilities of the MLP, and also have some
form of memory. Others have more uniform structures, potentially with every neuron
connected to all the others, and may also have stochastic activation functions.

For simple architectures and deterministic activation functions, learning can be achieved
using similar gradient descent procedures to those leading to the back-propagation
algorithm for feed-forward networks. When the activations are stochastic, simulated
annealing approaches may be more appropriate. The following will look at a few of the
most important types and features of recurrent networks.

L12-3

A Fully Recurrent Network

The simplest form of fully recurrent neural network is an MLP with the previous set of
hidden unit activations feeding back into the network along with the inputs:

Note that the time t has to be discretized, with the activations updated at each time step.
The time scale might correspond to the operation of real neurons, or for artificial systems
any time step size appropriate for the given problem can be used. A delay unit needs to
be introduced to hold activations until they are processed at the next time step.

Delay

Inputs

Outputs

Hidden Units

x(t)

 h(t) h(t)

h(t-1)

L12-4

The State Space Model

If the neural network inputs and outputs are the vectors x(t) and y(t), the three connection
weight matrices are WIH, W HH and WHO, and the hidden and output unit activation
functions are fH and fO, the behaviour of the recurrent network can be described as a
dynamical system by the pair of non-linear matrix equations:

€

h(t) = fH WIH x(t)+WHHh(t −1)()

€

y(t) = fO WHOh(t)()

In general, the state of a dynamical system is a set of values that summarizes all the
information about the past behaviour of the system that is necessary to provide a unique
description of its future behaviour, apart from the effect of any external factors. In this
case the state is defined by the set of hidden unit activations h(t).

Thus, in addition to the input and output spaces, there is also a state space. The order of
the dynamical system is the dimensionality of the state space, the number of hidden units.

L12-5

 Stability, Controllability and Observability

Since one can think about recurrent networks in terms of their properties as dynamical
systems, it is natural to ask about their stability, controllability and observability:

Stability concerns the boundedness over time of the network outputs, and the response of
the network outputs to small changes (e.g., to the network inputs or weights).

Controllability is concerned with whether it is possible to control the dynamic behaviour.
A recurrent neural network is said to be controllable if an initial state is steerable to any
desired state within a finite number of time steps.

Observability is concerned with whether it is possible to observe the results of the control
applied. A recurrent network is said to be observable if the state of the network can be
determined from a finite set of input/output measurements.

A rigorous treatment of these issues is way beyond the scope of this module!

L12-6

Learning and Universal Approximation

The Universal Approximation Theorem tells us that:

Any non-linear dynamical system can be approximated to any accuracy by a
recurrent neural network, with no restrictions on the compactness of the state
space, provided that the network has enough sigmoidal hidden units.

This underlies the computational power of recurrent neural networks.

However, knowing that a recurrent neural network can approximate any dynamical
system does not tell us how to achieve it. As with feed-forward neural networks, we
generally want them to learn from a set of training data to perform appropriately.

We can use Continuous Training, for which the network state is never reset during
training, or Epochwise Training, which has the network state reset at each epoch. We
now look at one particular learning approach that works for both training modes.

L12-7

Unfolding Over Time

The recurrent network can be converted into a feed-forward network by unfolding over time:

This means all the earlier theory about feed-forward network learning follows through.

Outputs

Inputs

Hidden Units

Inputs

Hidden Units

Inputs

Hidden Units

WIH

WIH

WIH

WHH

WHH

WHH

Time t

Time t-1

Time t-2

WOH

L12-8

Backpropagation Through Time

The Backpropagation Through Time (BPTT) learning algorithm is a natural extension of
standard backpropagation that performs gradient descent on a complete unfolded network.

If a network training sequence starts at time t0 and ends at time t1, the total cost function is
simply the sum over time of the standard error function Esse/ce(t) at each time-step:

€

Etotal (t0 ,t1) = Esse /cet=t0

t1∑ (t)

and the gradient descent weight updates have contributions from each time-step

€

Δwij = −η
∂Etotal (t0 ,t1)

∂wij

= −η
∂Esse /ce(t)
∂wij

t=t0

t1∑

The constituent partial derivatives ∂Esse/ce/∂wij now have contributions from the multiple
instances of each weight wij ∈ {W IH, W HH} and depend on the inputs and hidden unit
activations at previous time steps. The errors now have to be back-propagated through
time as well as through the network.

L12-9

Practical Considerations for BPTT

Even for the relatively simple recurrent network shown above, the unfolded network is
quite complex, and keeping track of all the components at different points of time can
become unwieldy. Most useful networks are even more problematic in this regard.

Typically the updates are made in an online fashion with the weights being updated at
each time step. This requires storage of the history of the inputs and past network states
at earlier times. For this to be computationally feasible, it requires truncation at a
certain number of time steps, with the earlier information being ignored.

Assuming the network is stable, the contributions to the weight updates should become
smaller the further back in time they come from. This is because they depend on higher
powers of small feedback strengths (corresponding to the sigmoid derivatives multiplied
by the feedback weights). This means that truncation is not as problematic as it sounds,
though many times step may be needed in practice (e.g., ~30). Despite its complexity,
BPTT has been shown many times to be an effective learning algorithm.

L12-10

Simple Recurrent Networks

Truncating the unfolded network to just one time step reduces it to a so-called Simple
Recurrent Network (which is also commonly known as an Elman network):

In this case, each set of weights now only appears only once, so it is possible to apply the
gradient descent approach using the standard backpropagation algorithm rather than full
BPTT. This means that the error signal will not get propagated back very far, and it will
be difficult for the network to learn how to use information from far back in time. In
practice, this approximation proves to be too great for many practical applications.

Outputs

Inputs

Hidden Units

Hidden Units

WIH

WHH

Time t

WOH

Time t-1

L12-11

The NARX Model

An alternative RNN formulation has a single input and a single output, with a delay line
on the inputs, and the outputs fed back to the input by another delay line. This is known
as the Non-linear Auto-Regressive with eXogeneous inputs (NARX) model:

It is particularly effective for Time Series Prediction, where the target y(t+1) is x(t+1).

Delay Delay

Multi-Layer Perceptron

Output y(t+1)

Input
 x(t)

Delay Delay Delay
x(t–1) x(t–2)

… …

y(t–2) y(t–1) y(t)

L12-12

Computational Power of Recurrent Networks

Recurrent neural networks exemplified by the fully recurrent network and the NARX
model have an inherent ability to simulate finite state automata. Automata represent
abstractions of information processing devices such as computers. The computational
power of a recurrent network is embodied in two main theorems:

Theorem 1

All Turing machines may be simulated by fully connected recurrent networks built of neurons
with sigmoidal activation functions.

Proof: Siegelmann & Sontag, 1991, Applied Mathematics Letters, vol 4, pp 77-80.

Theorem 2

NARX Networks with one layer of hidden neurons with bounded, one sided saturated (BOSS)
activation functions and a linear output neuron can simulate fully connected recurrent networks
with bounded one-sided saturated activation functions, except for a linear slowdown.

Proof: Siegelmann et al., 1997, Systems, Man and Cybernetics, Part B, vol 27, pp 208-215.

L12-13

Application – Triangular Model of Reading

Any realistic model of reading must consider the interaction of orthography (letters),
phonology (sounds) and semantics (meanings). A recurrent neural network of the form:

PHONOLOGY

SEMANTICS

ORTHOGRAPHY

is required. The various sub-tasks (e.g., reading and spelling) need to be trained in line
with human experience, and the dominant emergent pathways are found to depend on the
nature of the language (e.g., English versus Chinese).

L12-14

Application – Associative Memory

Associative Memory is the general idea of accessing memory through content rather than
by address or location. One approach to this is for the memory content to be the pattern
of activations on the nodes of a recurrent neural network. The idea is to start the network
off with a pattern of activations that is a partial or noisy representation of the required
memory content, and have the network settle down to the required content.

The basic associative memory problem can be stated as:

Store a set of P binary valued patterns {tp} = {ti
p} in such a way that, when it is

presented with a new pattern s = {si}, the system (e.g., recurrent neural network)
responds by producing whichever stored pattern tp most closely resembles s.

One could have separate input and output nodes to achieve this, or one could have a single
set of nodes that act both as inputs and outputs. Either way, one needs to specify suitable
node activation functions, and weight definition or update equations, so that the recurrent
connections allow the learned memories to be accessed.

L12-15

Hopfield Networks

The Hopfield Network or Hopfield Model is one good way to implement an associative
memory. It is simply a fully connected recurrent network of N McCulloch-Pitts neurons.
Activations are normally ±1, rather than 0 and 1, so the neuron activation equation is:

€

xi = sgn wijx j −θi
j
∑



 




  where

€

sgn(x) =
+1 if x ≥ 0
−1 if x < 0




Unlike the earlier feed-forward McCulloch-Pitts networks, the activations here depend on
time, because the activations keep changing till they have all settled down to some stable
pattern. Those activations can be updated either synchronously or asynchronously.

It can be shown that the required associative memory can be achieved by simply setting
the weights wij and thresholds θj in relation to the target outputs tp as follows:

wij =
1
N

ti
pt j
p

p=1

P

∑ , θi = 0

L12-16

A stored pattern tq will then be stable if the neuron activations are not changing, i.e.

€

ti
q = sgn wijt j

q −θi
j
∑



 




  = sgn

1
N

ti
pt j

pt j
q

p
∑

j
∑



 




 

which is best analyzed by separating out the q term from the p sum to give

€

ti
q = sgn ti

q +
1
N

ti
pt j

pt j
q

p≠q
∑

j
∑




 




 

If the second term in this is zero, it is clear that pattern number q is stable. It will also be
stable if the second term is non-zero but has magnitude less than 1, because that will not
be enough to move the argument over the step of the sign function sgn(x). In practice,
this happens in most cases of interest as long as the number of stored patterns P is small
enough. Moreover, not only will the stored patterns be stable, but they will also be
attractors of patterns close by. Estimates of what constitutes a small enough number P
leads to the idea of the storage capacity of a Hopfield network. A full discussion of
Hopfield Networks can be found in most introductory books on neural networks.

L12-17

Boltzmann Machines

A Boltzmann Machine is a variant of the Hopfield Network composed of N units with
activations {xi}. The state of each unit i is updated asynchronously according to the rule:

xi =
+1 with probability pi
−1 with probability 1− pi





where pi =
1

1+ exp −(wijx j − θ j) / Tj=1
N∑()

with positive temperature constant T, network weights wij and thresholds θj.

The fundamental difference between the Boltzmann Machine and a standard Hopfield
Network is the stochastic activation of the units. If T is very small, the dynamics of the
Boltzmann Machine approximates the dynamics of the discrete Hopfield Network, but
when T is large, the network visits the whole state space. Another difference is that the
nodes of a Boltzmann Machine are split between visible input and output nodes, and
hidden nodes, and the aim is to have the machine learn input-output mappings.

L12-18

Training proceeds by updating the weights using the Boltzmann learning algorithm

Δwij = −
η
T

xix j fixed
− xix j free()

where xix j fixed is the expected/average product of xi and xj during training with the input
and output nodes fixed at a training pattern and the hidden nodes free to update, and
xix j free is the corresponding quantity when the output nodes are also free.

For both Hopfield Networks and Boltzmann Machines one can define an energy function

E = − 1
2

wijxix j + θi
i=1

N

∑
j=1

N

∑
i=1

N

∑ xi

and the network activation updates cause the network to settle into a local minimum of
this energy. This implies that the stored patterns will be local minima of the energy. If a
Boltzmann Machine starts off with a high temperature and is gradually cooled (known as
simulated annealing), it will tend to stay longer in the basins of attraction of the deepest
minima, and have a good change of ending up in a global minimum at the end. Further
details about Boltzmann Machines can be found in most introductory textbooks.

L12-19

Restricted Boltzmann Machines and Deep Learning

One particularly important variation of the standard Boltzmann Machine is the Restricted
Boltzmann Machine that has distinct sets of visible and hidden nodes, with no visible-to-
visible or hidden-to-hidden connections allowed. This restriction makes it possible to
formulate more efficient training algorithms, in particular, the Contrastive Divergence
learning algorithm that performs an approximation to gradient descent.

These networks have proved effective in the field of Deep Learning, and were what
started much of the current interest in all forms of deep learning neural networks. Each
layer of a many-layered feed-forward neural network can be efficiently pre-trained as an
unsupervised Restricted Boltzmann Machine, and the whole network can then be fine-
tuned using standard supervised Backpropagation.

Such use of semi-supervised feature learning in deep hierarchical neural networks is
replacing hand-crafted feature creation in many areas. This is a major ongoing research
area, with many new developments published each year.

L12-20

Overview and Reading

1. We began by noting the important features of recurrent neural networks
and their properties as fully fledged dynamical systems.

2. Then we studied a basic Fully Recurrent Network and unfolding it over
time to give the Backpropagation Through Time learning algorithm.

3. This was followed by a brief overview of the NARX model and two
theorems about the computational power of recurrent networks.

4. We looked at a Reading Model and Associative Memory as examples.

5. Finally, Hopfield Networks and Boltzmann Machines were introduced.

Reading

1. Haykin-2009: Sections 11.7, 13.7, 15.1 to 15.14
2. Hertz, Krogh & Palmer: Sections 2.1, 2.2, 7.1, 7.2, 7.3
3. Ham & Kostanic: Sections 5.1 to 5.9

