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 Types of Feed-Forward Neural Network Applications
We have already noted that there are two basic goals for neural network research:

Brain modelling : The scientific goal of building models of how real brains work.
This can potentially help us understand the nature of human intelligence, formulate
better teaching strategies, or better remedial actions for brain damaged patients.

Artificial System Building : The engineering goal of building efficient systems for
real world applications.  This may make machines more powerful, relieve humans
of tedious tasks, and may even improve upon human performance.

These should not be thought of as competing goals.  We often use exactly the same
neural networks and techniques for both.  Frequently progress is made when the two
approaches are allowed to feed into each other.  There are fundamental differences
though, e.g. the need for biological plausibility in brain modelling, and the need for
computational efficiency in artificial system building.  Simple feed-forward neural
networks, such as MLPs, are surprisingly effective for both.
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Brain Modelling – What Needs Modelling?

It makes sense to use all available information to constrain our theories/models of real
brain processes.  This involves gathering as much empirical evidence about brains as we
can (e.g., by carrying out psychological experiments) and comparing it with the models.

The comparison between brains and models fall into three broad categories:

Development : Comparisons of children’s development with that of our models – this
will generally involve both maturation and learning.

Adult Performance : Comparisons of our mature trained models with normal adult
performance – exactly what is compared depends on what we are modelling.

Brain Damage / Neuropsychological Deficits : Often performance deficits, e.g. due to
brain damage, tell us more about normal brain operation than normal performance.

We shall consider these issues for a particularly simple and familiar task – “reading
aloud” or “text to phoneme conversion”.  Similar considerations will apply to a wide
range of psychological tasks that can be reduced to forms of input output mappings.
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The NETtalk Model of Reading

The NETtalk model of Sejnowski & Rosenberg (1987) is a basically a MLP which
generates output phonemes corresponding to the letter in middle of an input window:

output - phonemes

hidden layer  

input - letters

(nhidden)

(nchar • nletters)

(nphonemes)

The network can also be set up to figure out the letter-phoneme alignments for itself by
assuming the alignment that best fits in with its expectations (Bullinaria, 1997).

We’ll look at the results from a typical series of simulations.  The network training data
consisted of all 2998 English monosyllabic words, and the testing data was a standard
set of 166 made up pronounceable non-words.  It was trained using a standard learning
algorithm (back-propagation with momentum) with 300 hidden units.
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Development ≈ Network Learning

If neural network models are to provide a good account of what happens in real brains,
we should expect their learning process to be similar to the development in children.
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The networks find regular words (e.g. ‘bat’) easier to learn that exception words (e.g.
‘yacht’) in the same way that children do.  It also learns human-like generalization.
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Developmental Problems ≈ Restricted Network Learning

Many dyslexic children exhibit a dissociation (performance difference) between regular
and irregular word reading.  There are many ways this can arise in network models:
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1.   Limitation on computational resources (e.g., only 15 hidden units)
2.   Sub-optimal learning algorithm (e.g., SSE cost function and no SPO)
3.   Simple delay in learning (e.g., due to low learning rate η)
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Adult Performance ≈ Trained Network Performance

Having succeeded in building accurate models of children’s development, one might think
that our adult models (fully trained neural networks) require little further testing.  In fact,
largely due to better availability and reliability of the empirical data, there are a range of
adult performance measures that prove useful for constraining our models, such as:

Accuracy – basic task performance levels, e.g. how well are particular aspects of a
language spoken/understood, or how well can we estimate a distance?

Generalization – e.g. how well can we pronounce words we have never seen before
(vowm fi gowpiet?), or recognise an object from an unseen direction?

Reaction Times – response speeds and their differences, e.g. can we recognise one
word type faster than another, or respond to one colour faster than another?

Priming – e.g. if asked whether dog and cat are real words, one tends to say yes to cat
faster than if asked about dot and cat (this is lexical decision priming).

Speed-Accuracy Trade-off – across a wide range of tasks your accuracy tends to
reduce as you try to speed up your response, and vice-versa.

Different performance measures will be appropriate to test different models.
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Brain Damage ≈ Network Damage

Neural network models have natural analogues of brain damage – removal of sub-sets of
neurons and connections, adding noise to the weights, scaling the activation functions.  If
we damage the reading model, the regular items are more robust than the irregulars:
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These neural network deficits are the same as seen in human acquired Surface Dyslexia.



L11-9

Analysing the Internal Representations
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One can look at the represent-
ations the neural network learns
on its hidden layer.  The graph
shows the activation sub-space
corresponding to the distinction
between long and short ‘i’
sounds, i.e. the ‘i’ in ‘pint’
versus the ‘i’ in ‘pink’.  The
irregular words are closest to the
border line.  So, after network
damage, it is these that cross the
border line and produce errors
first.  Moreover, the errors will
mostly be regularizations.  This
is exactly the same as is found
with human surface dyslexics.
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Real World Applications

The real world applications of feed-forward neural networks are endless.  Some well
known ones that get mentioned in the recommended text books are:

1. Airline Marketing Tactician (Beale & Jackson, Sect. 4.13.2)
2. Backgammon (Hertz et al., Sect. 6.3)
3. Data Compression – PCA (Hertz et al., Sect. 6.3; Bishop, Sect. 8.6)  •
4. Driving – ALVINN (Hertz et al., Sect. 6.3)  •
5. ECG Noise Filtering (Beale & Jackson, Sect. 4.13.3)
6. Financial Prediction (Beale & Jackson, Sect. 4.13.3; Gurney, Sect. 6.11.2)  •
7. Hand-written Character Recognition (Hertz et al., Sect. 6.3; Fausett, Sect. 7.4)  •
8. Pattern Recognition/Computer Vision (Beale & Jackson, Sect. 4.13.5)  •
9. Protein Secondary Structure (Hertz et al., Sect. 6.3)
10. Psychiatric Patient Length of Stay (Gurney, Sect. 6.11.1)
11. Sonar Target Recognition (Hertz et al., Sect. 6.3)
12. Speech Recognition (Hertz et al., Sect. 6.3)
13. Text to Phoneme Mapping (Beale & Jackson, Sect. 4.13.1; Bullinaria, 2011)  •
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Data Compression - PCA

An auto-associator network is one that has the same outputs as inputs.  If in this case
we make the number of hidden units M smaller than the number of inputs/outputs N, we
will have clearly compressed the data from N dimensions down to M dimensions.

Such data compression networks have many applications where data transmission rates
or memory requirements need optimising, such as in image compression.  They clearly
work by removing the redundancy that exists in the data.  It can be shown that the
hidden unit representation spans the M  principal components of the original N
dimensional data, so standard PCA considerations apply (Bourland & Kamp, 1988).

N units

N units

M units

Input Patterns

Input Patterns

Compressed Representations
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Time Series Prediction

Neural networks have been applied to numerous situations where time series prediction
is required – predicting weather, climate, stocks and share prices, currency exchange
rates, airline passengers, etc.  We can turn the temporal problem into a simple input-
output mapping by taking the time series data x(t) at k time-slices t, t–1, t–2, …, t–k+1
as the inputs, and the output is the prediction for x(t+1).

Such networks can be extended in many ways, e.g. additional inputs for information other
than the series x(t), outputs for further time steps into the future, feeding the outputs back
through the network to predict further into the future (Weigend & Gershenfeld, 1994).

x(t+1)

x(t–2) x(t–1) x(t)x(t–k+1)  •  •  •
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Hand-written Character Recognition

The neural network literature is full of pattern recognition applications.  Typically one
takes pixelated image values as the network input and that maps via layers of hidden
units to a set of outputs corresponding to possible classifications of the image.

An early, but typical, example by Le Cun et al. (1989) was designed to recognise hand-
written ZIP codes (i.e. numerical postal codes).  The inputs consisted of a 16 × 16 array
representing pixelated images of hand-written digits scaled to a standard size, and these
fed through three layers of hidden units to ten output units which each corresponded to
one of the digits 0–9.  The first hidden layer contained 12 feature detectors (8 × 8), and
the second contained 12 feature detectors (4 × 4).  Each unit in each detector had a 5 × 5
receptive field in the earlier layer, and hard weight sharing was used to ensure that they
all detected the same feature in different parts of the retina.  The third hidden layer had
30 units fully connected to the second hidden layer and the outputs.

The network was trained on 7300 digits with ~1% errors and tested on 2000 digits with
~5% errors.  Pruning by Optimal Brain Damage improved the performance further.
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Zip-Code Neural Network Architecture

From: Introduction to the Theory of
Neural Computation, Hertz, Krogh
& Palmer, Addison-Wesley, 1991.
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Processing “What” and “Where” Together

General pattern recognition requires the determination of “What” and “Where” at the
same time, from the same pixelated images.  It is not obvious if this is best done using
one big network for both tasks, or separate networks.  Experiments to test this have been
carried out on simple 5 × 5 images on a network with parameterized architecture:

9 "what" 9 "where"

5 × 5 retina

Nhid1 Nhid2Nhid12

Input Layer

Hidden layer

Output Layer

The conclusion depends on precisely what learning algorithm is used and how well the
neurophysiological constraints (e.g., wiring volumes) are modelled (Bullinaria, 2007).
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Simplified “What-Where” Training Data
“What” = Nine 3 × 3 Patterns “Where” = Nine Positions in 5 × 5 Retina

                              

9 × 9 = 81 Training Patterns in total

e.g.      01110 00100 00100 00000 00000              100000000             010000000
Input (5 × 5 = 25 units)    What (9 units) Where (9 units)
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Autonomous Driving – ALVINN

Pomerleau (1989) constructed a neural network controller ALVINN for driving a car on
a winding road.  The inputs were a 30 × 32 pixel image from a video camera, and an
8 × 32 image from a range finder.  These were fed into a hidden layer of 29 units, and
from there to a line of 45 output units corresponding to the direction to drive.

The network was originally trained using back-propagation on 1200 simulated road
images.  After about 40 epochs the network could drive at about 5mph – the speed being
limited by the speed of the computer that the neural network was running on.

In a later study the network learnt by watching how a human steered, and by using
additional views of what the road would look like at positions slightly off course.  After
about three minutes of training, ALVINN was able to take over and continue to drive.
ALVINN has successfully driven at speeds up to 70mph and for distances of over 90
miles on a public highway north of Pittsburgh.  (Apparently, actually being inside the
vehicle during the neural network’s test drive was a big incentive for the researchers to
develop a good neural network!)  Recent versions have been even more impressive.
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ALVINN Architecture

From: Advances in Neural Information
Processing Systems 1, D.S. Touretzky
(Ed.), Morgan Kaufmann, 1989.
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Overview and Reading

1. We began by recalling the distinction between using neural networks for
brain modelling and for artificial system building.

2. Then we looked at the main issues in brain modelling (development, adult
performance, and neuropsychology) with reference to a reading model,
and saw how one can better understand the operation of particular neural
networks by looking at the patterns of activation on their hidden layer.

3. We ended by looking at a selection of real world applications, with five
studied in particular detail: data compression, times series prediction,
character recognition, the what-where task, and autonomous driving.

Reading

1. Hertz, Krogh & Palmer: Section 6.3
2. Gurney: Section 6.11
3. Beale & Jackson: Section 4.13
4. Ham & Kostanic: Chapters 6 to 10


