
IAI : Production Systems

© John A. Bullinaria, 2005

1. What is a Production System?

2. Inference Rules

3. Recognize-Act Cycle

4. Matching and Binding

5. Forward Chaining

6. Backward Chaining

7. Problems with Recognize-Act Cycle

8. Reason Maintenance Systems

9. Forward or Backward Chaining

10. Conflict Resolution

w7-2

What is a Production System?

A production system consists of four basic components:

1. A set of rules of the form Ci → Ai where Ci is the condition part and Ai is the action

part. The condition determines when a given rule is applied, and the action

determines what happens when it is applied.

2. One or more knowledge databases that contain whatever information is relevant

for the given problem. Some parts of the database may be permanent, while others

may temporary and only exist during the solution of the current problem. The

information in the databases may be structured in any appropriate manner.

3. A control strategy that determines the order in which the rules are applied to the

database, and provides a way of resolving any conflicts that can arise when several

rules match at once.

4. A rule applier which is the computational system that implements the control

strategy and applies the rules.

We shall make these ideas more concrete over the course of today’s lecture.

w7-3

Inference Rules

We are already familiar with the kind of rules our AI systems may use, e.g.

Deductive Inference Rule

Modus Ponens

Given “A” and “A implies B”, we can
conclude “B”:

A

A ⇒ B

B

Example:

It is raining
If it is raining, the street is wet

The street is wet

Abductive Inference Rule

Abduction

Given “B” and “A implies B”, it might
be reasonable to expect “A”:

B

A ⇒ B

A

Example:

The street is wet
If it is raining, the street is wet

It is raining

w7-4

Recognize-Act Cycle

Typically, our production systems will have a rule interpreter that takes the form of a

Recognize-Act Cycle. This cycle has four stages:

1. Match the condition/premise patterns in the rules against the elements in the

working memory to identify the set of applicable rules.

2. If there is more than one rule that can be ‘fired’ (i.e. that can be applied), then

use a Conflict Resolution strategy to choose which one to apply. If no rules are

applicable, then stop.

3. Apply the chosen rule, which may result in adding new items to the working

memory, or in deleting old ones.

4. Check if the terminating condition is fulfilled. If it is, then stop. Otherwise,

return to stage 1.

The termination condition can either be defined by a goal state, or by some kind of

resource/time limitation (e.g. a maximum number of cycles).

w7-5

Matching

The condition/premise patterns in the rules need to be matched with the known facts.

Consider, a typical rule (about the value of horses) that matches a set of facts:

In general there will be variables (e.g. x and y) in the rules which stand for arbitrary

objects. We need to find bindings for them so that the rule is applicable.

Facts

Comet is-a horse

Prancer is-a horse

Comet is-parent-of Dasher

Comet is-parent-of Prancer

Prancer is fast

Dasher is-parent-of Thunder

Thunder is fast

Thunder is-a horse

Dasher is-a horse

Rule

IF: x is a horse

x is the parent of y

y is fast

THEN : x is valuable

w7-6

Binding

We simply need to see which values can be assigned to the variables in the rule. For

example, “Comet is-a horse” matches “x is-a horse”, but “Comet is-a lion” would not.

From these we can deduce that there are two possible bindings applicable to the rule:

“x = Comet and y = Prancer” , “x = Dasher and y = Thunder”

The rule then tells us “x is valuable”, i.e. “Comet is valuable” and “Dasher is valuable”.

Bindings for
“ x is-a horse”

x = Comet

x = Prancer

x = Thunder

x = Dasher

Bindings for
“ y is fast”

y = Prancer

y = Thunder

Bindings for
“ x is a parent of y”

x = Comet , y = Dasher

x = Comet , y = Prancer

x = Dasher , y = Thunder

w7-7

Forward Chaining

Forward chaining or data-driven inference works by repeatedly: starting from the current

state, matching the premises of the rules (the IF parts), and performing the corresponding

actions (the THEN parts) that usually update the knowledge base or working memory.

The process continues until no more rules can be applied, or some cycle limit is met, e.g.

F & B Z

FC & D

C C
D

C & D F

A D

ZF & B

A D

B C

E A

B

E

D

EA

B
F

EA

FACTS FACTS FACTS FACTS

RULES RULES RULES

C

F & B Z
C & D F

A D

match

execute

match

execute

match

execute

A

D B
F

Z

w7-8

The Forward Inference Chain

In this example there are no more rules, so we can draw the inference chain:

This seems simple enough, but in this case we only had a few initial facts, and a few

rules. Generally, things will not be so straight forward.

Disadvantages of Forward Chaining

1. Many rules may be applicable at each stage – so how should we choose which one

to apply next at each stage?

2. The whole process is not directed towards a goal, so how do we know when to

stop applying the rules?

A D

C

F

B

Z

w7-9

Backward Chaining

Backward chaining or goal-driven inference works towards a final state by looking at the

working memory to see if the sub-goal states already exist there. If not, the actions (the THEN

parts) of the rules that will establish the sub-goals are identified, and new sub-goals are set up

for achieving the premises of those rules (the IF parts). The previous example now becomes:

RULESRULES RULES RULESRULESRULES

A E

C

A E

B B C

E

ZF & B

C & D F

ZF & B

C & D

A DD

FC & D

F & B

A

FACTS FACTS FACTS

Want F Want DWant Z

FACTSFACTSFACTS

E

CD

AA E

B

A E

CB

D
F

F & B

C & D

A D

F

Z

F

DA

C & D

ZF & B

A D

B C

A

Get AGet C, Get DGet F, Get B

A

Z
F

D

Execute

D
C B

F

Z

F & B Z
C & D F

Execute Execute

w7-10

The Backward Inference Chain

The first part of the chain works back from the goal until only the initial facts are
required, at which point we know how to traverse the chain to achieve the goal state.

Advantage of Backward Chaining

1. The search is goal directed, so we only apply the rules that are necessary to

achieve the goal.

Disadvantage of Backward Chaining

1. A goal has to be known. Fortunately, most AI systems we are interested in can be

formulated in a goal based fashion.

Z

F

B

D

C

A

w7-11

Problems with the Recognize-Act Cycle

We can identify four important potential problems with the Recognize-Act Cycle:

1. How do we know that our production system is Consistent?

⇒ We need a Reason Maintenance System

2. How do we know which Global Strategy for rule choice to apply?

⇒ We need to choose between Forward and Backward Chaining

3. How do we know which Local Strategy for rule choice to apply?

⇒ We need a Conflict Resolution System

4. How do we Maximize Efficiency as the Complexity increases?

⇒ We can use the Rete Algorithm

We shall study the first three points in the remainder of this lecture, and cover the Rete

Algorithm when we get to the lecture on Expert Systems.

w7-12

Reason Maintenance System

Recall the “Raining example” that we looked at before. That included the rule:

IF Raining ∧ Outside ∧ ¬HasUmbrella THEN Wet

Now suppose we have just gone outside and have the initial facts:

Dry, Outside, Raining

We can use the rule to generate a new fact, leaving us with:

Dry, Outside, Raining, Wet

This is now an inconsistent set of facts. A full scale system will have 1000s of rules and

facts, with an enormous scope for generating inconsistencies. We need to build some

kind of Reason Maintenance System into our system to deal with the inconsistencies.

The literature contains many examples of how these work (e.g. Nilsson, Section 17.3).

w7-13

Forward or Backward Reasoning?

Four useful factors to help us choose between forward and backward reasoning are:

1. Are there more possible start states or goal states?

In general it is best to move from the smaller set of states to the larger.

(Consider the situation of travelling between home and an unfamiliar place – it
makes sense to use forward chaining to get home from the unfamiliar place, but
backward chaining to get from home to the unfamiliar place.)

2. Do we require the system to justify its reasoning?

If so, we should prefer the direction that corresponds more closely with the way
that users think.

(It is a common requirement that AI systems must be able to justify their
reasoning in terms that the user can easily understand. This is because many users
will not trust an AI system that operates in a manner that they can’t understand.)

w7-14

3. What kind of events trigger problem solving?

If it is the arrival of a new fact, then forward chaining makes sense.

If it is a query to which a response is required, then backward chaining will be
more natural.

4. In which direction is the branching factor greatest?

Go in the direction with the lower branching factor.

Backward Chaining Better Forward Chaining Better

Start
Goal

Start Goal

w7-15

Conflict Resolution

Recall the four stages of the Recognise Act Cycle:

1. Match the rules against the known facts to see which rules can fire.

2. If more than one rule can fire, use a Conflict Resolution strategy to choose one.

3. Apply the chosen rule, updating the list of known facts.

4. Check the Termination Criterion and either stop or return to step 1.

Clearly, decisions made at the conflict resolution stage will be crucial, because they can

dramatically affect the solution reached, and how quickly it is found.

The conflict set is defined as the set of pairs of the form:

〈 Production rule, matching working memory elements 〉

and we need to chose one to fire. We need to distinguish between general conflict

resolution and problem specific conflict resolution.

w7-16

General Conflict Resolution Strategies

Perhaps the five most common General Conflict Resolution Strategies are:

1. Delete instantiations of rules that have already fired.

2. Order instantiations by the generation age of all the elements. Prefer the youngest.

3. Compare the generation age of the elements in working memory which match the

first condition of the rules. Prefer the youngest.

4. Prefer the most specific rules (i.e. those with the most pre-conditions).

5. Random choice.

The rationale behind these strategies is fairly obvious:

1. Prevents obvious endless loops of the same rules being applied with the same facts.

2. New elements are more likely to describe the current situation.

3. As for strategy 2, but may be more efficient.

4. This catches any exceptions/special cases before applying more general rules.

5. Very easy to compute.

w7-17

Specific Conflict Resolution Example

Consider the following set of rules:

R1: IF: engine does not turn AND battery is not flat
THEN: ask user to test starter motor

R2: IF: there is no spark

THEN: ask user to check the points
R3: IF: engine turns AND engine does not start

THEN: ask user to check the spark
R4: IF: engine does not turn

THEN: ask user to check the battery
R5: IF: battery is flat

THEN: ask user to charge battery AND EXIT

If the initial facts are “engine does not turn” and “battery is not flat”, the conflict set is:

{ 〈 R1, engine does not turn, battery is not flat 〉, 〈 R4, engine does not turn 〉 }

We can see that our general conflict resolution strategy 4 would work well here.

w7-18

Problem Specific Conflict Resolution – Extra Conditions

The easiest way to proceed in problem specific cases is to simply add extra conditions
to the rules to avoid the conflicts.

These extra conditions can be related to the inference strategies, e.g. to what is currently

being searched for, or to what rule applications tend to be most useful.

In our previous example we might modify R1 to give:

R1: IF: haven’t already tested starter motor
AND engine does not turn
AND battery is not flat

THEN: ask user to test starter motor

Disadvantages

1. We will end up with a mixture of heuristics and factual knowledge.

2. Large knowledge bases will not be easily maintainable.

w7-19

Problem Specific Conflict Resolution – Meta-Rules

It makes good sense to avoid mixing the conflict resolution heuristics with the rule base

by separating the object level knowledge from the meta-level knowledge.

In our previous example we might supplement rule R1 with a meta-rule to give:

RULE R1:

 IF: engine does not turn
AND battery is not flat

THEN: ask user to test starter motor

META-RULE M1:

IF: haven’t already tested starter motor

THEN: select R1

Naturally this will increase the overall number of rules, but it does separate the factual

and heuristic knowledge and makes the knowledge base easier to maintain.

w7-20

Overview and Reading

1. We began by defining the idea of a production system, recalling the basic

types of inference rule, and specifying the basic recognize-act cycle.

2. We then looked at matching, binding, forward chaining, and backward

chaining.

3. We ended looking at how to deal with inconsistencies, how to choose between

forward and backward chaining, and how to perform conflict resolution.

Reading

1. Winston: Chapter 7

2. Jackson: Sections 5.1, 5.2, 5.3

3. Negnevitsky: Section 2.1, 2.2, 2.6, 2.8

4. Rich & Knight: Sections 2.2, 2.4, 7.2.1

5. Russell & Norvig: Sections 9.1, 9.2, 9.3, 9.4

6. Nilsson: Section 2.2.1, 17.3

