
IAI : Machine Learning

© John A. Bullinaria, 2005

1. What is Machine Learning?

2. The Need for Learning

3. Learning in Neural and Evolutionary Systems

4. Problems Facing Expert Systems

5. Learning in Rule Based Systems

6. Rule Induction and Rule Refinement

7. Concept Learning and Version Spaces

8. Learning Decision Trees

w11-2

What is Machine Learning?

Any study of Machine Learning should begin with a formal definition of what is meant

by Learning. A definition due to Simon (1983) is one of the best:

“Learning denotes changes in the system that are adaptive in the sense that they

enable the system to do the same task (or tasks drawn from a population of

similar tasks) more effectively the next time.”

We can easily extend this definition easily to our AI systems:

“Machine learning denotes automated changes in an AI system that are adaptive

in the sense that they enable the system to do the same task (or tasks drawn from

a population of similar tasks) more effectively the next time.”

The details of Machine Learning depend on the underlying knowledge representations,

e.g. learning in neural networks will be very different to learning in rule based systems.

w11-3

Types of Learning

The strategies for learning can be classified according to the amount of inference the

system has to perform on its training data. In increasing order we have

1. Rote learning – the new knowledge is implanted directly with no inference at

all, e.g. simple memorisation of past events, or a knowledge engineer’s direct

programming of rules elicited from a human expert into an expert system.

2. Supervised learning – the system is supplied with a set of training examples

consisting of inputs and corresponding outputs, and is required to discover the

relation or mapping between then, e.g. as a series of rules, or a neural network.

3. Unsupervised learning – the system is supplied with a set of training examples

consisting only of inputs and is required to discover for itself what appropriate

outputs should be, e.g. a Kohonen Network or Self Organizing Map.

Early expert systems relied on rote learning, but for modern AI systems we are

generally interested in the supervised learning of various levels of rules.

w11-4

The Need for Learning

We have seen that extracting knowledge from human experts, and converting it into a

form useable by the inference engine of an expert system or other computer system, is

an arduous and labour intensive process.

For most large scale AI systems, it is much more efficient to give the system enough

knowledge to get it started, and then leave it to learn the rest for itself. We may even

end up with a system that learns to be better than a human expert.

The general learning approach is to generate potential improvements, test them, and

only use those that work well. Naturally, there are many ways we might generate the

potential improvements, and many ways we can test their usefulness. At one extreme,

there are model driven (top-down) generators of potential improvements, guided by an

understanding of how the problem domain works. At the other, there are data driven

(bottom-up) generators, guided by patterns in some set of training data.

We shall now look in turn at learning in neural, evolutionary, and rule-based systems.

w11-5

Learning in Neural Network Systems

Recall that neural networks consist of many simple processing units (that perform

addition and smooth thresholding) with activation passing between them via weighted

connections. Learning proceeds by iteratively updating the connection weights wij in

such a way that the output errors on a set of training data are reduced.

The standard procedure is to define an output error measure (such as the sum squared

difference between the actual network outputs and the target outputs), and use gradient

descent weight updates to reduce that error. The details are complex, but such an

approach can learn from noisy training data and generalise well to new inputs.

i jwij

outj = Sigmoid(∑ini wij)ini

w11-6

Learning in Evolutionary Computation Systems

Evolutionary computation systems simulate the evolution by natural selection that is

seen in biological systems. Typically one creates a whole population of AI agents

defined by some genotypic representation, and measures their individual performance

levels (or fitnesses) on the given task or problem. The most fit individuals are chosen

from each generation to survive and ‘breed’ to form the next generation.

The simulated breeding process involves cross-over and mutation of genetic material.

This will map into the individuals’ fitness and drive the selection process. In this way,

good recombinations and mutations will proliferate in the population, and we will end

up with generations of individuals which are increasingly good at their given tasks.

Often evolutionary improvements and lifetime learning are combined in the same

system, and we end up with an approach that is superior to either on their own. We

find the evolution of particularly good learners, and that learned behaviour can be

assimilated into the genotype (via the Baldwin Effect).

w11-7

Problems Facing Expert Systems

We can identify four major limitations facing conventional expert systems:

1. Brittleness – Expert systems generally only have access to highly specific domain

knowledge, so they cannot fall back on more general knowledge when the need arises,

e.g. to deal with missing information, or when information appears inconsistent.

2. Lack of Meta-Knowledge – Expert systems rarely have sophisticated knowledge

about their own operation, and hence lack an appreciation of their own limitations.

3. Knowledge Acquisition – Despite an increasing number of automated tools, this

remains a major bottleneck in applying expert system technology to new domains.

4. Validation – Measuring the performance of expert systems is difficult because it is

not clear how to quantify the use of knowledge. The best we can do is compare their

performance against that of human experts.

Progress on the first two points should follow once we have made progress on the third

point. We shall now look at how machine learning techniques can help us here.

w11-8

 Types of Learning in Rule Based Systems

The principal kinds of learning appropriate for rule based systems are

1. The invention of new conditions and/or actions for rules.

2. The invention of new conflict resolution strategies (i.e. meta-rules).

3. The discovery and correction of errors in the existing system.

For learning new rules (including meta-rules) there are two basic approaches:

1. Inductive rule learning methods create new rules about a domain that are not

derivable from any previous rules. We take some ‘training data’, e.g. examples of

an expert performing the given task, and work out corresponding rules that also

generalize to new situations.

2. Deductive rule learning enhances the efficiency of a system’s performance by

deducing new rules from previously known domain rules and facts. Having the

new rules should not change the outputs of the system, but should make it perform

more efficiently.

w11-9

Meta-Rules and Meta-Knowledge

In order to learn effectively, we need to be able to reason about the rules, and to have an

understanding of the state of the knowledge base. We need to have meta-rules, i.e.

rules about the rules, and meta-knowledge, i.e. knowledge about the knowledge.

An example of a meta-rule is:

IF: there are rules which do not mention the current goal in their premise,

AND there are rules which do mention the current goal in their premise,

THEN: the former rule should be used in preference to the latter

An example of a meta-knowledge is:

Knowledge/information that can be frequently used in strong rules is more important

than knowledge/information that is rarely used and only appears in weak rules.

Using meta-rules and meta-knowledge involves meta-level inference.

w11-10

Rule Induction Systems

The simplest rule induction system can be represented by the following flowchart:

Create Initial Rule Set

Generate New Rules from Old

Evaluate Rules on Training Data

Eliminate Poorly Performing Rules

Select New Training Instance

System Good Enough?
NO YES

CRITIC

PERFORMER

GENERATOR

FINISHED

SAMPLER

w11-11

Rule Refinement Strategies

There are numerous approaches one can take to improve the rules in an existing rule

based systems. A good rule refinement program should involve:

1. Removing redundancy. More than one rule may deal with essentially the same

situation – unnecessary rules should be removed to increase efficiency.

2. Merging rules. Sometimes a set of rules can be merged into a single, more

general, rule that has the same effect. Doing this will improve efficiency.

3. Making rules more specific. If a rule is too general it can make incorrect

predictions. Such rules should be made more specific to reduce errors.

4. Making rules more general. If a rule can be made more general without

introducing errors, it should be, as it is likely to improve generalization.

5. Updating parameters. Dealing with uncertainty will usually involve various

inter-dependant parameters (e.g. probabilities) that need optimising.

w11-12

Concept Learning and Classification

The above procedures for generating and testing and refining rules make good sense,

but for large (i.e. useful) systems we need to formulate a more systematic procedure.

The idea of concept learning and classification is that given a training set of positive

and negative instances of some concept (which belongs to some pre-enumerated set of

concepts), the task is to generate rules that classify the training set correctly, and that

also ‘recognize’ unseen instances of that concept, i.e. generalize well.

To do this we work with a set of patterns that describe the concepts, i.e. patterns which

state those properties which are common to all individual instances of each concept.

The simplest patterns are nothing more than the descriptors that specify the rule

conditions (i.e. the IF parts of the rules) that relate to the given concept.

We will clearly need to be able to match efficiently given instances in the training set

against the hypothetical/potential descriptions of the concepts.

w11-13

Version Spaces and Partial Ordering

The idea of a version space is simply a way of representing the space of all concept

descriptions (rule conditions) consistent with the training instances seen so far.

Efficient representation and update of version spaces can be achieved by defining a

partial order over the patterns generated by any concept definition language.

We can do this by defining the relation “more specific than or equal to” as follows:

“Pattern P1 is more specific than or equal to pattern P2 (written as P1 ≤ P2) if

and only if P1 matches a subset of all the instances that P2 matches.”

For example, P1 = “car” is a fairly general concept pattern, P2 = “American car” is

more specific, and P3 = “yellow American cars with sun-roofs and alloy wheels” is an

even more specific pattern. We can write P3 ≤ P2 ≤ P1. Note that we can order P4 =

“blue car” with respect to P1 but not P2 and P3, so the ordering is only partial.

w11-14

Version Spaces – Blocks World Example

Consider the following simple example from Winston’s “blocks world”:

P1:

P2:

Clearly, pattern P1 is more specific than pattern P2, because the constraints imposed by

P1 are only satisfied if the weaker constraints imposed by P2 are satisfied. So P1 ≤ P2.

Note that, for a program to perform this partial ordering, it would need to “understand”

the relevant concepts and relationships, e.g. that wedges and bricks are different shapes,

that supporting implies touching, and so on.

LYING

WEDGE or BRICK

any orientation

WEDGE or BRICK

not LYING

any shape

STANDING

BRICK
SUPPORTS

TOUCHES

w11-15

Version Spaces – Boundary Sets

Once a system can grasp the relationship of specificity, the version space can be

represented in terms of its maximally specific and maximally general patterns.

The system can consider the version space as containing:

1. The set S = {Si} of maximally specific patterns.

2. The set G = {Gi} of maximally general patterns.

3. All concept descriptions which occur between these two sets in the partial ordering.

This is called the boundary sets representation for version spaces, which is both

1. Compact –it is not explicitly storing every concept description in that space.

2. Easy to update – a new space simply corresponds to moving the boundaries.

With this convenient representation we can now apply machine learning techniques to it.

w11-16

Version Spaces – Learning the Boundaries

A machine learning technique known as the candidate elimination algorithm can

manipulate the boundaries in an extremely efficient manner.

This is best illustrated by thinking of a set of positive and negative training examples in

some input space, and looking at where the decision boundaries can go:

It is easy to see how the boundaries can be refined as increasing numbers of data points

become available, and how to extend the approach to more complex input spaces.

S = Most specific
boundaries

G = Most general
boundaries

++

+

+

+

+

+

+

–

–

–

––

–

–

–

–

––

–

–
–

S
G

––

–

w11-17

Decision Trees

Decision trees are a particularly convenient way of structuring information for

classification systems. All the data to be classified enters at the root of the tree, while

the leaf nodes represent the classifications. For example:

Intermediate nodes represent choice points, or tests upon attributes of the data, which

serve to further sub-divide the data at that node.

yesnormalhigh

rainsunny

Outlook

no

Humidity Windy

Stay In Go Out

Go Out

Stay In Go Out

overcast

w11-18

Decision Trees versus Rules

Although decision trees look very different to rule based systems, it is actually easy to

convert a decision tree into a set of rules. From the above example we have:

R1: IF: Outlook = overcast R4: IF: Outlook = sunny
THEN: Go Out Humidity = high

THEN: Stay In
R2: IF: Outlook = sunny

Humidity = normal R5: IF: Outlook = rain
THEN: Go Out Windy = yes

THEN: Stay In
R3: IF: Outlook = rain

Windy = no
THEN: Go Out

The advantage of decision trees over rules is that comparatively simple algorithms can

derive decision trees (from training data) that are good at generalizing (i.e. classifying

unseen instances). Well known algorithms include CLS, ACLS, IND, ID3, and C4.5.

w11-19

Decision Tree Algorithms - ID3, C4.5, Etc.

All decision tree algorithms set out to solve basically the same problem: Given a set of

training data D, and a set of disjoint target classes {Ci}, the algorithm must use a series

of tests Tj on data attributes with outcomes {Oi} to partition D into subsets {Di} such that

Di = { d ∈ D : T(d) = Oi }

If we repeat this process for an appropriate sequence of tests T, we will end up with each

resulting data subset Di corresponding to a single class Ci, and we can draw the resultant

decision tree, and if required, convert it to a set of rules.

The hard part is to determine the appropriate sequences of tests, and this is where the

various decision tree algorithms differ. ID3 uses ideas from information theory and at

each stage selects the test that gains the most information (or equivalently, results in the

biggest reduction in entropy). C4.5 uses different heuristics which usually work better.

Note that unlike the version space approach to concept learning, these algorithms are not

incremental – if we get new data we need to start again.

w11-20

Overview and Reading

1. We began by defining some general ideas about machine learning systems.

2. We first looked at learning in neural networks and evolutionary systems.

3. We then considered the need for learning in expert systems, and how we

might set up simple rule induction systems and rule refinement strategies.

4. We then considered the version space approach to concept learning.

5. We ended by looking at decision trees, how they can be turned into rule sets,

and how they can be generated by algorithms such as ID3 and C4.5.

Reading

1. Jackson: Chapter 20

2. Russell & Norvig: Chapters 18, 19, 20 & 21

3. Callan: Chapters 11 & 12

4. Rich & Knight: Chapter 17

5. Nilsson: Section 17.5

