|Al : Overview and Revision

© John A. Bullinaria, 2006

Aims and Learning Outcomes

The Roots, Goals and Sub-fields of Al
Biological Intelligence and Neural Networks
Building Intelligent Agents

Knowledge Representation

Semantic Nets and Frames

Production SystemsRecognize-Act Cycle
Search — Uninformed and Informed

© 0 N O O bk WD PE

Expert Systems
10. Treatment of Uncertainty
11. Machine Learning

W1 : Module Aimsand L earning Outcomes

Aims:;

1. Provide a general introduction to Al, its techniques and its main sub-fields.

2. Give an overview of key underlying ideas, such as knowledge representation, rule
based systems, search, and learning.

3. Demonstrate the need for different approaches for different problems

4. Provide a foundation for further study of specific areas of Al.

L earning Outcomes:

1. Recognise the important features of Al systems and structure the field of Al into its
main sub-fields.

2. Explain some of the most important knowledge representation formalisms and why
they are needed, discussing their advantages and disadvantages. Apply these
knowledge representation formalisms to simple unseen examples.

3. Describe and apply some simple search algorithms.

4. Outline the processes involved in Expert Systems and in building such systems.

5. Discuss the importance of learning in intelligent systems, and their implementation.

6. Provide examples of different types of Al systems, and explain their differences,

common techniques, and limitations.

rev-2

W2 : What Exactly IsAI?

“Artificial Intelligence (Al) is the part of computer science concerned with designing
intelligent computer systems, that is, systems that exhibit characteristics we associate
with intelligence in human behaviour — understanding language, learning, reasoning,
solving problems, and so on.” (Barr & Feigenbaum, 1981)

Engineering Goal To solve real world problems using Al techniques such as
knowledge representation, learning, rule systems, search, and so on.

Scientific Goal To determine which ideas about knowledge representation, learning,
rule systems, search, and so on, explain various sorts of real intelligence.

Al hasroots in a number of older fields: Philosophy, Logic/Computation, Psychology/
Cognitive Science, Biology/Neuroscience, Evolution. N&@eong Al v. Weak Al.

Al has manysub-fields (such as Neural Networks, Evolutionary Computation, Expert
Systems, Natural Language Processing, Planning, Robotics, Vision), but they employ
commontechniques (such as Representation, Learning, Rules, Search).

rev-3

W3 : Biological Intelligence and Neural Networks

The human nervous system that forms the basis of our natural intelligence has the form:

Neural
Stimulus —»| Receptors Network/ Effectors —» Response
“— Brain []

We can attempt to uggrtificial Neural Networks as the basis of Al systems, because:

1. They are extremely powerful computational devices (Turing equivalent).

2. Massive parallelism makes them very efficient.

3. They can learn and generalize — so no need for enormous feats of programming.

4. They are very fault tolerant — like the “graceful degradation” of biological systems.

5. They are very noise tolerant — coping where normal symbolic systems have difficulty.

They can be used for boBrain Modelling andArtificial System Building.

rev-4

W4 . Rational Agents

“An agent is anything that can be viewed as perceiving its environment theeagbrs

andacting upon that environment througffectors.” (Russell &Norvig, 1995)
_ —> —>
Stimulus —» Sensors Agent Effectors — Response
D E—]

A rational agent is one that acts in a manner that causes it to be as successful as it can.
We need to determine appropriggeformance measures to judge success in each case.

An ideal rational agent is one that takes whatever action is expected to maximise its
performance measure on the basis of the evidence provided by its perceptual history anc
whatever built-in knowledge it has. Asutonomous agent will supplement its built-in
knowledge with its own acquired (or learned) knowledge in order to act appropriately.

We design agents according to tHegrcepts, Actions, Goals andEnvironment.

rev-5

Typesof Intelligent Agents

We can classify four types of intelligent agents of increasing sophistication:

1. Simple Reflex Agents — use simpleondition-action ruleor IF-THEN rulesto
produce appropriate (intelligent looking) actions for given percepts.

2. Reflex Agents with an Internal State/Model — can keep track of previous states
and use knowledge of how the world evolves to produce better actions.

3. Goal based agents — can determine sequences of actions to reach its goal state(s).
Searchandplanningtechniques will usually be required.

4. Utility based agents — can use utility/quality measures to choose between
alternative sequences of actions/states that lead to a goal state being obtained.

We need to take into account the five principal features concerning agent environments:
accessibility, determinism, discreteness, episodicness, andstaticness. To build the

most intelligent agents possible, percepts should not only be used for generating actions,
but also to improve the ability to act in the future, i.deton.

rev-6

W5 : Knowledge Representation

The object of aknowledge representation is to express knowledge in a computer
tractable form, so that it can be used to enable our agents to perform well.

A knowledge representation language is defined by two aspects:
1. Syntax The syntax of a language defines which configurations of components of
the language constitute valid sentences.

2. Semantics The semantics defines which facts in the world the sentences refer to,
and hence the statement about the world that each sentence can make.

A good knowledge representation system for a particular domain should possess four
Important properties: Representational Adequacy, Inferential Adequacy, Inferential
Efficiency, andAcquisitional Efficiency.

Common knowledge representations are: Natural Language, Databases, First Order
Logic, Rule Systems, Semantic Networks and Frames. Advantages/Disadvantages?

rev-7

Practical Aspects of Good Representations

In practice, the theoretical requirements for good knowledge representations can usually
be achieved by dealing appropriately with a number of practical requirements:

1. The representations need to dmenplete — so that everything that could possibly
need to be represented, can easily be represented.

They must beomputable — implementable with standard computing procedures.

3. They should make the importamijects andrelations explicit and accessible — so
that it is easy to see what is going on, and how the various components interact.

4. They shouldsuppressirrelevant detail — so that rarely used details don’t introduce
unnecessary complications, but are still available when needed.

5. They should expose any natucahstraints — so that it is easy to express how one
object or relation influences another.

They should béransparent — so you can easily understand what is being said.

The implementation needs to bencise andfast — so that information can be
stored, retrieved and manipulated rapidly.

rev-8

W6 : Semantic Networks

A semantic network represents knowledge as a set of labelled nodes and links, e.g.

Yes M Persol m» 163cn

IS a

height
Man ———— 1 178cn

IS IS a

heigh
Chess Playel | | Baseball Playe ﬂ» 195cn

Two important features aneheritance anddefaults (i.e. typical values). We can
assign expected/default values of parameters (e.g. height, has nose) and inherit them
from higher up the hierarchy. This is more efficient than listing all the details at each
level. We can alsover-ride the defaults. For example, baseball players are taller than
average men, so we make their default height over-ride the default height for men.

rev-9

Components of a Semantic Network

The formal components of semantic networks are quite straight-forward:

L exical part nodes — denoting objects
links — denoting relations between objects
labels — denoting particular objects and relations

Structural part the links and nodes form directed graphs
the labels are placed on the links and nodes

Semantic part meanings are associated with the link and node labels
(the details will depend on the application domain)

Procedural part constructors allow creation of new links and nodes
destructors allow the deletion of links and nodes
writers allow the creation and alteration of labels
readers can extract answers to questions

Some common examples include AND/OR Trees, IS-A and IS-PART Hierarchies, and
Representations of Events and Natural Language Sentences.

rev-10

Multiple Inheritance and Tangled Hierarchies

If multipleinheritance is allowed, we must avoidheritance conflicts. Hierarchies that
are not simple trees are calleagled hierarchies. For example, can Oliver fly in:

Bird — > Yes

flies
is a VM

NO «&——— ' -
fios Ostrich Pet Bird
invstc':lM M'e
Oliver

A better solution than having a specific “flies no” for all individual instances of an
ostrich, would be to have an algorithm for traversing the hierarchy which guarantees that
specific knowledge will always dominate over general knowledge. We can define the
concept oinferential distance, that provides gartial orderingof closeness.

rev-11

Frame Based Systems

Frames are a natural extension 8&€mantic NetworksThey consist of sets of slots filled
by values, procedures for calculating values, or pointers to other frames. For example:

hotel room hotel chair
IS-a. room Is-a chair
location hotel location hotel room
contains {hotel chair, » height 20-40cm
hotel beq, legs 4
hotel phone; comfortable yes
...} use for sitting on

Scripts are frame based systems that describe stereotyped sequences of events an
actions that enable an intelligent agent to perform appropriately in a particular context.

rev-12

W7 : Production Systems

A production system consists of four basic components:

1. A setof rules of the formC, — A whereC, is the condition part ané, is the action
part. The condition determines when a given rule is applied, and the action
determines how it is applied.

2. One or moreknowledge databases that contain whatever information is relevant
for the given problem. Some parts of the database may be permanent, while others
may temporary and only exist during the solution of the current problem. The
information in the databases may be structured in any appropriate manner.

3. A control strategy that determines the order in which the rules are applied to the
database, and provides a way of resolving any conflicts that can arise when several
rules match at once.

4. A rule applier which is the computational system that implements the control
strategy and applies the rules.

The whole system operates according to the deductive inference rule “modus ponens”.

rev-13

Recognize-Act Cycle

Typically, our production systems will have a rule interpreter that takes the form of a
Recognize-Act Cycle. This cycle has four stages:

1.

Match condition/premise patterns in the rules against the elements in the
working memory to identify the set of applicable rules. This will usually involve
binding specific values to the variables in the rules.

If there is more than one rule that can be ‘fired’ (i.e. that can be applied) at a
given time, then use@nflict resolution strategy to choose which one from that
conflict set to apply. If no rules are applicable, then stop.

Apply the chosen rule, which may involve adding a new item to the working
memory or deleting an old one.

Check if the terminating condition is fulfilled. If it is, then stop. Otherwise,
return to stage 1.

Thetermination condition can either be defined by a goal state, or by a cycle condition
(e.g. a maximum number of cycles).

rev-14

Forward and Backward Chaining

Forward chaining or data-driven inference works by repeatedly: starting from the
current state, matching at the premises of the rules (the IF parts), performing the
corresponding actions (the THEN parts), and possibly updating the knowledge base or
working memory.

Backward chaining or goal-driven inference works towards a final state by looking at

the working memory to see if the sub-goal states already exist there. If not, then look at
the actions (the THEN parts) of the rules that will establish the sub-goals, and set up new
sub-goals for achieving the premises of those rules (the IF parts).

There are four major factors to help us choose between forward and backward reasoning:

1. Are there more possible start states or goal states? Start at the lowest.
2. Do we require the program to justify its reasoning? If so, follow human reasoning.
3. What kind of events trigger problem solving? New facts or queries?

4. In which direction is the branching factor greatest? Go with the lower.

rev-15

Conflict Resolution Strategies

Perhaps the five most commgeneral conflict resolution strategies are:

1. Delete instantiations of rules that have already fired (to prevent repetitions).

2. Order instantiations by the generation age of all the elements. Prefer the younger
ones, since new elements are more likely to describe the actual situation.

3. Compare the generation age of the elements in working memory which match the
first condition of the rules. Prefer the younger ones. May be more efficient than 2.

Prefer the most specific rules (i.e. those with the most pre-conditions).
5. Random choice (which, if nothing else, is very easy to compute).

The easiest way to proceedpiroblem specific casesis to simplyadd extra conditionso

the rules to avoid the conflicts. These extra conditions can be related to the inference
strategies, e.g. to what is currently being searched for. However, we will end up with a
mixture of heuristic and factual knowledge, and large knowledge bases will not be easily
maintainable. It makes sense to separatelject level knowledgieom themeta-level
knowledgeand to supplement our rules with appropriatta-rules.

rev-16

W8 : Search

The state space is the space of all possible states, or configurations, our system may be
in. Generally, we work with some conveniegpresentation of that search space.

If the number of possible states of the system is small enough, we can represent them all
along with the transitions between them, statie space graph.

The aim of our search algorithms is to find a route, or sequence of transitions, through
the state space graph from ouitial state to agoal state.

There are four important properties of search algorithms we need to consider:

1.

2
3.
5

Completeness — Is a solution guaranteed to be found if at least one solution exists?
Optimality — Is the solution found guaranteed to be best possible solution?
Time Complexity — The upper bound on the time to find a solution.

Space Complexity — The upper bound on the storage space (memory) required.

rev-17

Types of Uninformed Search

It is helpful to think of the search process as building gpaech tree within the state

space graph. The root of the search tree is the initial state. The leaf nodes correspond t
states that have not yet been expanded, or have been expanded but generated no furth

nodes. A good strategy for avoidingpeated states will improve the search efficiency.

For tree branching factdy; maximum deptim, solution deptt, depth limitl, we find:

Strategy Complete Optimal Time Complexity | Space Complexity
BFS Yes Yes O(b% O(b?
DFS No No O(b™) O(bm)
DLS Ifl>d No ©](s)) O(bl)
DFIDS Yes Yes O(b? O(bd)
BDS Yes Yes O(b?¥? O(b??)

Thebest overall is DFID which is complete, optimal and has low memory requirements.

| nformed Sear ch

Informed search uses some kind oévaluation function to tell us how far each
expanded state is from a goal state, and/or some kihduofstic function to help us
decide which state is likely to be the best one to expand next.

The simplest idea ofireedy best first search is to expand the node that is already
closest to the goal, as that is most likely to lead quickly to a solution. This is like DFS,
it is not complete, not optimal, and has time and complexity bf)O(

Suppose each noden a search tree has an evaluation functiahdefined as the sum
of the cosg(n)to reach that node from the start state, plus the estimateld(np&t get
from that state to a goal statd* search repeatedly picks the node with the lowigs)
to expand next. Ih(n)is admissible, then this strategy is both complete and optimal.

Hill climbing andgradient descent learning repeatedly follow transitions that result in
Improvements in the evaluation function. This is often how neural networks are trained.

rev-19

W9 : Expert Systems

“An expert system is a computer program that represents and reasons with knowledge of
some specialist subject with a view to solving problems or giving advidackson, 1999)

There are no natural limits on what problem domains expert systems can be built to deal
with. Expert systems can be distinguished from conventional computer systems in that:

1. Theysimulate human reasoning about the problem domain, rather than simulating
the domain itself.

2. They perfornreasoning over representations of human knowledge, in addition to
doing numerical calculations or data retrieval. They have corresponding distinct
modules referred to as th&erence engine and theknowledge base.

3. Problems tend to be solved usihguristics (rules of thumb) oapproximate
methods or probabilistic methods which, unlike algorithmic solutions, are not
guaranteed to result in a correct solution.

4. They usually have to providsplanations andjustifications of their solutions or
recommendations in order to convince the user that the reasoning is in fact correct.

rev-20

Building Expert Systems

Expert systems are typically built around a powerful production system:

Knowledge
acquisition
system

Knowledge
base of
facts, rules
heuristics

Knowledge Enginee

Theknowledge acquisition component allows the expert to enter knowledge or expertise
into the system, and refine it later when required. The principal stages are: knowledge
elicitation, intermediate representation, and compilation into executable form.

Inference
engine

[

User
interface

The majortechnical problems that need to be overcome are: the knowledge acquisition
bottleneckprittleness, lack ofmeta-knowledge, and the difficulty of reliable validation.

W10 : Treatment of Uncertainty

Potentialsources of uncertainty for Al systems, such as expert systems, fall into two
types:imperfect domain knowledge andimperfect case data.

Then there are thragpes of uncertainty:randomness (e.g. 3% of sensors fail in first
year),vagueness (e.g. tall, little, etc.), anthadequacy (e.g. reliability of experts’ rules).

The obvious way to treat uncertainty is to use the laws of probaliaye¢ Rule,
frequentist probabilities, etc.) to perfornprobabilistic reasoning. But this is generally
Intractable because of the enormous number of joint/conditional probabilities involved.

Bayesian Networks avoid this problem by usingpnditional independencies among the
variables to ignore many interactions.p{A|{x},{ v.}) = p(Al{x}) then A is conditionally
independent ofy{} and, as far a# is concerned, if we knowx{} we can ignore ¥.}.

Alternative treatments of uncertainty includbempster-Shafer Theory based orbelief
functions, andFuzzy Logic based oriuzzy set theory.

rev-22

W11 : MachineLearning

Strategies for learning can be classified according to the amount of inference the system
has to perform on its training data. In increasing order we have:

1.
2.

Rote learning — new knowledge is implanted directly with no inference at all.
Supervised learning — the system is given a set of training examples consisting of
iInputs and outputs and is required to discover the relation or mapping between them.
Reinforcement learning — the system is given a set of training examples consisting
of inputs and is required to improve its outputs using feedback on how good they are.
Unsupervised learning — the system is given a set of training examples consisting
only of inputs and is required to discover all by itself what the outputs should be.

A general learning agent has four basic componergstfarmance element, acritic, a
learning element, and goroblem generator.

Traditional machine learning procedures includde induction systems, the version
space approach taoncept learning, and decision tree algorithms. Nature inspired
machine learning techniques includiral networks andevolutionary computation.

rev-23

Overview and Reading

1. The module appears to have achieved its aims and learning outcomes.

2. We began with an overview of the roots, goals and sub-fields of Al, and a
discussion of biological intelligence and its basis in neural network systems.

The general ideas of rational and intelligent agents were then covered.

4. This led to the need for a range of powerful knowledge representations such
as semantic networks and frames, and production systems.

5. Procedures for performing search were then discussed.

6. The above ideas could then be used in building expert systems, and for
handling uncertainty in them.

7. We ended looking at how to build machine learning systems.

Reading

Your lecture notes!

rev-24

