
A27217 No calculator permitted in this examination

 -1- Turn over

School of Computer Science

First Year - BSc Artificial Intelligence and Computer Science
First Year - BSc Natural Sciences

First Year - BSc Computer Science
First Year - MEng Computer Science/Software Engineering

06 22754

Foundations of Computer Science

Summer Examinations 2012

Time allowed: 3 hr

[Answer ALL Questions]

[Use the Separate Answer Book for EACH Part]

 No calculator

A27217 -2- Turn over

Part A

[Use the Separate Answer Book for THIS Section]

IN THIS SECTION YOU ARE ALLOWED TO USE ALL THE FUNCTIONS
IN THE APPENDIX

1. Write an OCaml function called cd which counts the number of elements which

have consecutive duplicates. What is the asymptotic complexity of your
function?

 For example: cd [1; 2; 3; 3; 4; 5; 5] = 2

 For example: cd [1; 2; 2; 2; 3] = 2

 [10%]

2. Using symbolic evaluation and showing all steps of computation, calculate

map (fun n -> n+1) [1; 2]

where map is defined as

let rec map f = function

 | [] -> []

 | x::xs -> (f x)::(map f xs)

 [10%]

3. Write an OCaml function sf which orders the elements of a list according to

their increasing frequency. What is the asymptotic complexity of your function?

For example: sf [1; 2; 3; 4; 2; 3; 4; 4] = [1; 2; 3; 4]

 [10%]

 No calculator

A27217 -3- Turn over

4. Consider this function, which "flips" a binary tree:

let rec flip = function

| Empty -> Empty

| Node (a, l, r) -> Node (a, flip r, flip l)

Using structural induction on trees show that flip is its own inverse, which means

flip (flip t) = t

for any tree t.
 [10%]

5. (a) Explain the term “amortised complexity”.

 (b) Give the 2-list implementation of queues ("Banker's queues").

 (c) Explain why your implementation in (b) is superior to the naive

implementation below:

Open List

type ’a queue = ’a list

let enq (x, xs) = xs @ [x]

let deq xs = (hd xs, tl xs)

 [10%]

 No calculator

A27217 -4- Turn over

Part B

[Use the Separate Answer Book for THIS Section]

6. (a) Give an inductive definition of a Binary Tree and of a Quad Tree. [2%]

 (b) Explain how a Quad Tree can be used to represent a square gray-scale

image. Define appropriate primitive operators for Quad Trees and use
them to create an efficient pseudocode algorithm that turns a gray-scale
image upside down. [6%]

 (c) What additional conditions must be satisfied for a Binary Tree to be a valid

Binary Search Tree? [2%]

 (d) Draw the Binary Search Tree that results from inserting the items
 [5 9 7 3 1 8 4 2] in that order into an initially empty tree. Then draw the

tree that results from removing item 5 from that tree using the standard
Binary Search Tree delete algorithm. [4%]

7. (a) Describe in words the general idea underlying the Quicksort algorithm for

sorting an array of items. [3%]

 (b) What are the average and worst case time complexities of the Quicksort

algorithm? Give a simple example of how the worst case can easily arise,
and how it can be avoided. [4%]

 (c) What does it mean to say that a sorting algorithm is stable? Discuss the

stability of the Quicksort algorithm and the relation of stability to the
computational costs of the algorithm. [3%]

 (d) Suppose you had data about seven million customers to sort according to

how much they had spent, but only needed to know the fifty who had spent
the most. Explain how those details would affect your choice of sorting
algorithm. [3%]

 No calculator

A27217 -5- Turn over

8. (a) Explain what is meant by the terms hash table, hash collision, linear
probing and secondary hashing. [3%]

 (b) Comment on the advantages and disadvantages of using hash tables for

data storage. [3%]

 (c) Suppose four digit keys are to be stored in a hash table represented as an

array of size 13. The hash function is simply the first digit. Why is that not
a sensible choice of hash function? Draw the initially empty hash table and
insert the following keys into it using linear probing: “3487”, “1346”, “4143”,
“3571”, “2583” and “0937”. [3%]

 (d) Suggest an improved hash function for the above type of data and explain

why it is better. [2%]

9. (a) What does it mean to say a graph is planar? Suggest a practical

application where that property is important. Draw the graphs K5 and K3,3.
Why are these graphs important in the context of planarity? [4%]

 (b) Outline the general idea of Dijkstra’s algorithm for finding the shortest path

between two nodes in a weighted graph. Apply the algorithm to find the
shortest path from A to F in the following weighted graph, showing the
computations involved at each stage. [8%]

 No calculator

A27217 -6- Turn over

APPENDIX : THE LIST MODULE (SELECTED FUNCTIONS)

val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the first element of the given list. Raise Failure "hd" if the list is empty.

val tl : 'a list -> 'a list

Return the given list without its first element. Raise Failure "tl" if the list is empty.

val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at
position 0. Raise Failure "nth" if the list is too short. Raise Invalid_argument"List.nth"
if n is negative.

val rev : 'a list -> 'a list

List reversal.

val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the infix operator @. Not tail-recursive (length of
the first argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent to
List.rev l1 @ l2, but rev_append is tail-recursive and more efficient.

val map : ('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an]
with the results returned by f. Not tail-recursive.

val rev_map : ('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive
and more efficient.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

val for_all : ('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it
returns (p a1) && (p a2) && ... && (p an).

val exists : ('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p.
That is, it returns (p a1) || (p a2) || ... || (p an).

 No calculator

A27217 -7- End of paper

val mem : 'a -> 'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val find : ('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p. Raise
Not_found if there is no value that satisfies p in the list l.

val filter : ('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of
the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.
val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an],
[b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1);
...; (an,bn)]. Raise Invalid_argument if the two lists have different lengths. Not tail-
recursive.

val sort : ('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison
function must return 0 if its arguments compare as equal, a positive integer if the first
is greater, and a negative integer if the first is smaller (see Array.sort for a complete
specification). For example, compare is a suitable comparison function. The resulting
list is sorted in increasing order. List.sort is guaranteed to run in constant heap space
(in addition to the size of the result list) and logarithmic stack space. The current
implementation uses Merge Sort. It runs in constant heap space and logarithmic
stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements
that compare equal are kept in their original order) . The current implementation uses
Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison
function cmp, merge cmp l1 l2 will return a sorted list containting all the elements of
l1 and l2. If several elements compare equal, the elements of l1 will be before the
elements of l2. Not tail-recursive (sum of the lengths of the arguments).

