
Foundations of Computer Science (Semester 2) – 2015

Assessed Exercise Sheet 7 – 10% of Continuous Assessment Mark

Deadline : 11pm Sunday 8th March, via Canvas

Question 1  (18 marks)

Show how the array [5, 3, 4, 6, 8, 4, 1, 9, 7, 1, 2] would be sorted if the Heapsort algorithm
was used.  Describe the various processes involved and show the array as a Heap Tree at each
stage.

First build a binary heap tree using heapify, i.e. load the array items in order into a binary
tree (left to right in each level from top to bottom) and bubble down each non-leaf item
starting from the bottom:

Then successively swap each top item into the last filled position, with bubbling down of each
new top item:

The final heap tree in array form (i.e. read left to right in each level from top to bottom) is the
sorted version of the original array.



Question 2  (20 marks)

Outline, in no more than 100 words, the general Quicksort procedure for sorting an array.
[Hint:  This is another example of the kind of “bookwork” question you can expect in the
exam, though you will not normally be given a word limit.  The answers are easily found in
the lecture notes, but it is worth practicing writing clear and concise answers to questions like
this about the key topics in the module, without referring to the lecture notes.]

The general procedure is to repeatedly split/partition each array at each stage in such a way
that all the items in the first sub-array are smaller or equal to a chosen “pivot item” and all the
items in the second sub-array are greater or equal to that “pivot item”, and then concatenate
all the final single-item sub-arrays to give the sorted full array.

Sort the array [5, 3, 4, 6, 8, 4, 1, 9, 7, 1, 2] using Quicksort with the pivot chosen to be the
middle (rounded down) element of the array at each stage, and a partitioning algorithm that
leads to a stable sort.  Say how your partitioning algorithm works, and show the state of the
array at each stage, i.e. its order and partitioning for each recursive call.

The partitioning algorithm processes each given array in left-to-right order, putting items
smaller than the pivot in the left sub-array in left-to-right order, items larger than the pivot in
the right sub-array in left-to-right order, with the pivot in between them.  Items equal to the
pivot are put in the left or right sub-array depending on whether they are to the left or right of
the pivot in the original array.

Start                                            [5, 3, 4, 6, 8, 4, 1, 9, 7, 1, 2]
Partition with 4                       [3, 4, 1, 1, 2]       4      [5, 6, 8, 9, 7]
Partition with 1,8                   [1]  1  [3, 4, 2]      4     [5, 6, 7]  8  [9]
Partition with 4,6                   [1]  1  [2, 3] 4 []    4     [5] 6 [7]  8  [9]
Partition with 2                      [1]  1  [] 2 [3] 4 []   4   [5] 6 [7]  8  [9]
Finished                                      [1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9]

Question 3  (20 marks)

Suppose you have an array of integers a with no duplicates.  Write an efficient procedure
makeBalBST(a) that creates a perfectly balanced binary search tree from them.  You can
use procedures size(a) that returns the size of an array a; quicksort(a) that returns
the sorted version of array a; makeBT(v,l,r) that returns a binary tree with root value v,
left binary sub-tree l and right binary sub-tree r; and aPart(a,i1,i2) that returns an
array made up of elements i1 to i2 of array a.  [Hint:  Think carefully about how many
times, if any, you should call quicksort(a)to make your algorithm most efficient.  You
will probably find it easiest to use recursion, but not necessarily using repeated calls of your
main makeBalBST(a) procedure.]

makeBalBST(a) {
return balancedBT(quicksort(a))

}

balancedBT(a) {
int s = size(a) – 1
if( s == 0 ) return makeBT(a[0],emptyTree,emptyTree)



if( s == 1 ) return makeBT(a[0],emptyTree,
makeBT(a[1],emptyTree,emptyTree))

return makeBT(a[s/2],balancedBT(aPart(a,0,s/2-1)),
balancedBT(aPart(a,s/2+1,s)))

}

What is the overall average time complexity of your algorithm?

If the size of the array is n, the average-case time complexity of quicksort is O(n log n), and
that of balancedBT(a) is certainly no worse than that, so the overall time complexity is
O(n log n).

Question 4  (20 marks)

Outline, in no more than 100 words, the general Mergesort procedure for sorting an array.

Starting from the given array, Mergesort repeatedly splits the array at each stage into its first
and last halves, retaining the ordering of and within the sub-arrays.  This is repeated until
each sub-array contains only one item, which is trivially sorted.  The sorted sub-arrays are
then merged back together again, in the reverse order of their splitting, in a way that preserves
the sorting.  That merging is easily done by repeatedly taking the “smallest” item from the
front of what is left of the two sub-arrays.

Sort the array [4, 7, 8, 2, 3, 1, 2, 3, 6, 5] using Mergesort.  Show the state of the array at each
stage, i.e. its order and partitioning for each recursive call.

Start           [4, 7, 8, 2, 3, 1, 2, 3, 6, 5]
Split 1        [4, 7, 8, 2, 3] [1, 2, 3, 6, 5]
Split 2        [4, 7] [8, 2, 3] [1, 2] [3, 6, 5]
Split 3        [4] [7] [8] [2, 3] [1] [2] [3] [6, 5]
Split 4        [4] [7] [8] [2] [3] [1] [2] [3] [6] [5]
Merge 4     [4] [7] [8] [2, 3] [1] [2] [3] [5, 6]
Merge 3     [4, 7] [2, 3, 8] [1, 2] [3, 5, 6]
Merge 2     [2, 3, 4, 7, 8] [1, 2, 3, 5, 6]
Merge 1     [1, 2, 2, 3, 3, 4, 5, 6, 7, 8]

Question 5  (22 marks)

Explain, in no more than 150 words, when and why applying two phase Radix Sort to an
array is able to produce a sorted array.  State any conditions that must be satisfied for it to
work well.

Two phase Radix sort works well when there are two sort keys, each with a strictly restricted
set of values.  The first phase produces a queue of items for each value of the least significant
(secondary) key, and those queues are concatenated in the order of the secondary key.  Those
items are then put into queues for each value of the most significant (primary) key, preserving
their existing (secondary key) order.  This leaves each queue sorted according to the
secondary key.  When those queues are concatenated in the order of the primary key, they are
in order of the primary key, with repeated values in the order of the secondary key.  Thus the



array is sorted as required.

A library has its books organized primarily according to 20 categories represented by the two
digit codes 01, 02, 03, … 20, and secondarily according to the first two letters of the first
author’s surname Aa, Ab, …, Az, Ba, …, Zz.  Use Radix Sort to sort the set of books with
keys: [07 Ce, 09 Fa, 17 Mo, 09 Ce, 10 Fa, 09 Mo, 07 Aa, 07 Fa].  Show the state of the book
list and what is being done at each stage.

First place the books in order into a queue for each secondary key:

Aa : 07 Aa
Ce : 07 Ce, 09 Ce
Fa : 09 Fa, 10 Fa, 07 Fa
Mo : 17 Mo, 09 Mo

Then concatenate the queues in the order of the secondary key:

07 Aa, 07 Ce, 09 Ce, 09 Fa, 10 Fa, 07 Fa, 17 Mo, 09 Mo

Next place the books in that order into a queue for each primary key:

07 : 07 Aa, 07 Ce, 07 Fa
09 : 09 Ce, 09 Fa, 09 Mo
10 : 10 Fa
17 : 17 Mo

Finally concatenate the queues in order of the primary key to give the sorted list:

07 Aa, 07 Ce, 07 Fa, 09 Ce, 09 Fa, 09 Mo, 10 Fa, 17 Mo


