Foundations of Computer Science (Semester 2) — 2015
Assessed Exercise Sheet 5 — 10% of Continuous Assessment Mark

Deadline : 11pm Sunday 22" February, via Canvas

Question 1 (20 marks)

The numbers [25, 12, 8, 17, 26, 18] need to be inserted in that order into an initially empty
Binary Heap Tree. Draw the state of the Heap Tree after each number has been inserted.
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Now draw the Heap Tree after each of the first two highest priority items have been removed
from the resulting Heap Tree.

AN
/ \ /

12

Finally, draw the Heap Tree after each of the two removed items have been added back to the
Heap Tree in the order they were removed.
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Question 2 (20 marks)

There are three obvious ways of merging two similarly sized binary heap trees s and t into a
single heap tree:



(1) Move the items one at a time from the smaller heap tree into the larger heap tree using
the insert algorithm studied in the lecture notes (section 7.4).

(i1)) Repeatedly move the last items from one heap tree to the other, with bubbling up, until
the new binary tree makeTree (0, t,s) is complete. Then move the last item of the
new tree to replace the dummy root “0”, and bubble down that new root.

(ii1)) Concatenate the array forms of s and t and use the heapify algorithm from the
lecture notes (section 7.6) to convert it into a new heap tree.

Comment on the average-case time complexities of each approach, and thus suggest which
approach would be the best in practice to use in general. Are there any special cases for
which a different choice might be appropriate?

Since the two heap trees have a similar number of items 7, the three approaches will have
time complexities as follows:

(1)  O(n) items will need to be moved and bubbled at cost O(logn), giving an overall time
complexity of O(nlogn).

(i) Typically, half the items in the last level of one tree will need moving and bubbling, so
that is again O(n) moves at cost O(logn), again giving an overall time complexity of
O(nlogn). However, the actual number of operations will on average be many less than
approach (1), by something like a factor of four, so this approach would be better, even
though the algorithm is more complex.

(iii)) The heapify algorithm has time complexity O(n), and the concatenation need be no
more than that, so this approach is O(n), making it in the best general approach of all
three.

If the two heap trees are such that very few moves are required for approach (ii), then that
may look like a better choice of approach than the O(n) approach (iii), but makeTree will
itself be an O(n) procedure if the tree is in array-based rather than pointer-based form, which
it usually is for heap trees.

Question 3 (18 marks)

It is stated in the lecture notes (section 7.7) that the structure of a Binomial Heap with n nodes
“is unique, and will consist of at most log,n+1 trees”. Give an intuitive explanation of why
that must be true.

By definition, a binomial tree of order k contains exactly 2* nodes, and a Binomial Heap can
only contain zero or one binomial tree of each order. Thus the total number of nodes in a
Binomial Heap must be

n=yb2' b, €10,1]
k=0

where b, are the number of trees of order k. Thus there is a one-to-one mapping between the
Binomial Heap structure and the standard binary representation of n, and since the binary
representation is clearly unique, so is the Binomial Heap structure. The maximum number of
trees is the maximum number of non-zero binary digits, which is the number of digits when n
is written in binary without leading zeros, i.e. log,n+1.



Insert the integers [35, 3, 7, 2, 4, 8] in that order into a Binomial Heap. Show the heap after
each item is inserted.
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Question 4 (20 marks)

Often one needs to determine whether an array contains any duplicate items. Write a
procedure duplicates (a), which doesn’t involve sorting, that returns true if integer
array a contains duplicates, and false otherwise. You may assume that you have access to
a procedure size(a) that returns the size of an array a.

duplicates(a) {
for( int i = 0 ; i <= size(a)-2 ; i++ ) {
for( int j = i+l ; j <= size(a)-1 ; j++ ) {
if( a[i] == a[]j] ) return true
}
}

return false

}

What is the worst case time complexity of your algorithm?

Let the size of the array be n. The worst case will be to do a full check and return false. In
that case, the outer loop must go through » iterations, and on average the inner loop will go
through ~n/2 iterations, so the worst case time complexity is O(n?).

What about the average case time complexity of your algorithm?

The average case time complexity will depend on the nature of the data, i.e. what arrays the
average is taken over. If there are usually many duplicates, the algorithm will return true after
a few checks, however big the array is, so the average case complexity may be close to O(1).
If there are very few duplicates and often none, the average case complexity will be close to
the worst case complexity, i.e. O(n?).

Question 5 (22 marks)

Suppose you have access to a procedure Xsort (a) that returns a sorted version of array a,
that you know has average and worst case time complexity of at least O(n log n). Write an
efficient new procedure duplicates2(a) to perform the test for duplicates, that begins by
calling Xsort (a) to sort the given array. You may again assume that you have access to a



procedure size (a) that returns the size of an array a.

duplicates2(a) {
a = Xsort(a)
for( int i = 0 ; i <= size(a)-2 ; i++ ) {
if( a[i] == a[it+l] ) return true
}

return false

}

What is the overall worst case time complexity of your algorithm?

Let the size of the array be n. The for loop will go through at most n-1 iterations, so its worst
case time complexity is O(n). So the overall worst case time complexity of the algorithm will
be equal to that of Xsort, because we know that is at least O(n log n).

What about the overall average case time complexity of your algorithm?

The overall average case time complexity of the algorithm will again equal that of Xsort,
however many duplicates there are in the data.

Thus, comment on when it is worth using Xsort in a duplicates testing algorithm.

The worst case time complexity will be improved if the worst case time complexity of Xsort
is better than O(n?), for example O(n log n). The advantage for average case time complexity
will depend on the nature of the data, i.e. what arrays the average is taken over. If there are
usually many duplicates, then using Xsort will make the average performance worse. If
there are very few duplicates and often none, the average case complexity will be close to the
worst case complexity, and thus lead to improvements if the average case time complexity of
Xsort is better than O(n?), for example O(n log n).



