
Foundations of Computer Science (Semester 2) – 2015

Assessed Exercise Sheet 2 – 10% of Continuous Assessment Mark

Deadline : 11pm Sunday 1st February, via Canvas

Question 1 (24 marks)

Suppose you have a series of photograph 1.jpg, 2.jpg, …, N.jpg and wish to store their
locations as a doubly linked list as described in the lectures.

Produce a graphical representation for the N = 5 case.

For the general N case, state in words (not pseudocode) an efficient ordered list of operations
that will insert an additional photograph x.jpg into the list at a particular given point near the
middle.

1. Create a new 3-cell with data element that is the location of x.jpg.
2. Copy the rear pointer of the cell that now precedes it into the rear pointer of the new cell.

3. Change the rear pointer of the cell that now precedes it to point to the new cell.
4. Copy the front pointer of the cell that now follows it into the front pointer of the new cell.
5. Change the front pointer of the cell that now follows it to point to the new cell.

Suppose the photograph locations were instead stored in a simple array. State in words an
ordered list of operations that will insert an additional photograph x.jpg into the array at a
particular given point near the middle.

1. Copy the content of array position N into position N+1

2. Repeat for array positions N-1 down to the position where the new photograph is needed.
3. Insert the location of x.jpg into the required position.

Comment on the different time complexities of the doubly linked list and array versions.

The doubly linked list version has constant time complexity (5 operations). The array version
has linear time complexity (~N/2 operations) and is therefore usually much slower.

Question 2 (16 marks)

In the lecture notes (section 2.2) we looked at a procedure last(L) that returned the last
item in the given list L. Modify that to create a recursive procedure getItem(i,L) that

1.jpg 5.jpg4.jpg3.jpg2.jpg

returns item i in a list L, where i is an integer greater than zero.

 getItem(i,L) {
if (isEmpty(L)))
 error(‘Error: List is too short.’)
elseif (i == 1)
 return first(L)
else return getItem(i-1,rest(L))

}

Question 3 (24 marks)

A quadtree was defined in the lectures in terms of primitive constructors baseQT(value)
and makeQT(luqt,ruqt,llqt,rlqt), selectors lu(qt), ll(qt), ru(qt) and
rl(qt), and condition isValue(qt). Suppose a gray-scale picture is represented by
such a quadtree with values in the range 0…255, for example:

Write a procedure flip(qt), that uses the above primitive quadtree operators, to flip the
picture about the horizontal line through its centre.

flip(qt) {
if (isValue (qt))
 return qt
else return makeQT(flip(ll(qt)), flip(rl(qt)),
 flip(lu(qt)), flip(ru(qt)))

 }

Write another procedure avevalue(qt), that uses the above primitive quadtree operators,
to return the average gray-scale value across the whole picture.

avevalue(qt) {
if (isValue(qt))
 return qt
else return (avevalue(lu(qt)) + avevalue(ru(qt))
 + avevalue(ll(qt)) + avevalue(rl(qt)))/4

 }

Question 4 (20 marks)

Suppose you already have the primitive binary tree procedures isempty(bt), root(bt),
left(bt), and right(bt). Write a procedure isLeaf(bt) that returns true if the
binary tree bt is a leaf node, and false if it is not.

 isLeaf(bt) {
return (not isempty(bt)

and isempty(left(bt)) and isempty(right(bt)))
 }

Then write a recursive procedure numLeaves(bt) that returns the number of leaves in the
given binary tree bt. It is allowed to call any of the primitive binary tree procedures and also
your isLeaf(bt) procedure.

 numLeaves(bt) {
if(isempty(bt))

return 0
elseif (isLeaf(bt))

return 1
else return (numLeaves(left(bt)) + numLeaves(right(bt)))

 }

Question 5 (16 marks)

It is often important to know whether two given binary trees are the same. Write a procedure
equalBinTree(t1,t2) which returns true if the given binary trees t1 and t2 are the
same, and false otherwise. You can assume that you have access to the basic binary tree
procedures isempty(t), root(t), left(t), and right(t). [Hint: Remember that
you can only directly test the equality of numbers, e.g. node values.]

 equalBinTree(t1,t2) {
if (isEmpty(t1) and isEmpty(t2))
 return true
elseif (isEmpty(t1) or isEmpty(t2))
 return false
else return ((root(t1) == root(t2)) and
 equalBinTree(left(t1),left(t2)) and
 equalBinTree(right(t1),right(t2)))

 }

What is the time complexity of your algorithm?

Linear in n, or O(n), where n is the number of nodes in the smallest tree.

