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What to expect from this lecture

● Nothing on exam

● No assignment

You can thank John later.

● How a simple program is really 
executed by a computer

● Why we kind of need a CPU cache

● Recap hash tables

● How caches are implemented

● Rationale and design of a real-world 
algorithm that uses hash tables



  

Summing an array of numbers

int sum(int array[], int count) {
    int result = 0;
    for (int i = 0; i < count; i++) {
        result += array[i];
    }
    return result;
}



  

What's really going on

compiler machineprogrammer
program.c

assembler
bytecode

Demo: compile!



  

Summing an array of numbers

int sum(int array[], int count) {

    int result = 0;

    for (int i = 0; i < count; i++) {
        result += array[i];

    }
    return result;
}

int sum(int array[], int count) {

    int pointer* = array;
    int result = 0;

    while (count -= 1; count != 0) {
        result += *pointer;
        pointer = pointer + 1;
    }
    return result;
}



  

Summing an array of numbers

int sum(int array[], int count) {
    int pointer* = array;
    int result = 0;

    while (count -= 1; count != 0) {

        result += *pointer;
        pointer = pointer + 1;

    }

    return result;
}

int sum(int array[], int count)
    pointer = array;
    int result = 0
    if (count == 0) {
        goto end
    }
begin:
    result += *pointer // Look up element
    pointer += 4   // Move one integer right
    count -= 1     // Decrement by one
    if (count != 0) {
        goto begin;
    }
end:
    return result;
}



  

Summing an array of numbers

int sum(int array[], int count)
    pointer = array;
    int result = 0
    if (count == 0) {
        goto end
    }
begin:
    result += *pointer // Look up element
    pointer += 4   // Move one integer right
    count -= 1     // Decrement by one
    if (count != 0) {
        goto begin;
    }
end:
    return result;
}

sum:
    pointer = array
    xor     result, result
    test    count, count
    je      end

begin:
    add     result, [pointer]
    add     pointer, 4
    dec     count
    jne     begin

end:
    ret    result



  

Summing an array of numbers

sum:
    pointer = array
    xor     result, result
    test    count, count
    je      end

begin:
    add     result, [pointer]
    add     pointer, 4
    dec     count
    jne     begin

end:
    ret    result

sum:

    xor     eax, eax
    test    rsi, rsi
    je      end

begin:
    add     eax, dword ptr [rdi]
    add     rdi, 4
    dec     rsi
    jne     begin

end:
    ret



  

Instruction types

1. Set register to a value

2. If a register is 0, jump to another location in the code

3. Add a memory location to a register

4. Add 4 to a register

5. Subtract 1 from a register

6. Exit from the function

All of them are really really fast, except for one.

This is due to chemical properties of memory.



  

The processor memory gap

[picture removed for copyright reasons]

This picture shows that from 1980 to 2000, CPU speeds increased ~1000×,  while RAM 
speed only increased ~5×.

See http://dx.doi.org/10.1109/40.592312 page 2 ; SRAM = Static RAM follows the CPU 
line.

From: Patterson et al, A Case for Intelligent RAM, in: IEEE Micro 17:2, pp 34.



  

Timings on modern computers

Approximate timing for various operations on a typical PC:

Read 16 bytes sequentially: ~1ns

Source: Peter Norvig, Teach yourself programming in ten years, 
http://norvig.com/21-days.html

Task Time

execute typical instruction 1/1,000,000,000 sec = 1 nanosec

fetch from L1 cache memory 0.5 nanosec

branch misprediction 5 nanosec

fetch from L2 cache memory 7 nanosec

Mutex lock/unlock 25 nanosec

fetch from main memory 100 nanosec

send 2K bytes over 1Gbps network 20,000 nanosec

read 1MB sequentially from 
memory

250,000 nanosec

fetch from new disk location (seek) 8,000,000 nanosec

read 1MB sequentially from disk 20,000,000 nanosec

send packet US to Europe and back 150 milliseconds = 150,000,000 nanosec



  

Memory cache: the idea

● Memory accesses are usually close together

● Put recently-accessed memory in faster memory

Requirements:

● Store various fragments of main memory

● Be super fast



  

1969: introduction of “buffer
storage”: 16 kB



  



  

Hash tables: recap

- Set of keys

- Usually: set of values

- A size s

- A hash function
  from keys to {0, .., s-1}

- A collision strategy:
  none / direct chaining
  / linear probing / double hashing
  / buckets

(example)

Num Memory

0 false

1 true

2 first prime

4 = 2+2 = 2×2 = 2² =...

6 perfect

7 first non-fib prime

42 answer to something 
important

314 a bit like π

1989 I was born

2015 now



  

Hash table: CPU cache

Keys: memory block numbers
Hash: last digit
Value: block of memory
Collision strategy: none

(example)

Block no = address div 10
Hash function = block no mod 10

To read a byte of memory:

● Look in the CPU cache in the 
corresponding hash table slot

● If it’s not there:

– read from DRAM (slow) a 
memory block, and

– replace the entry in the CPU 
cache

● Look up the right bytes from the 
cache



  

Picture: Intel Conroe die, probably in Core 2 Duo



  

2-way associative CPU cache

Keys: memory block numbers
Hash: last digit
Value: time of access + block of memory
Collision strategy: buckets

(example)

Block no = still address div 10
Hash function = still block no mod 10

But uses more memory!

In the same way: 4-way associative cache, 
8-way associative.

To read a byte of memory:

● Look in the CPU cache in the corresponding 
hash table slot

● If it’s not there:

– Choose a block to evict from the cache

– Read from DRAM (slow) a memory 
block, and

– Replace the entry in the CPU cache

● Look up the right bytes from the cache

● Update the time last accessed



  

Caches, caches, caches

Typical recent-ish system:

● Level 1 cache: 64 kB¹, 4-way associative²

● Level 2 cache: 256 kB¹, 8-way associative²

(Same block size*, more entries = different hash fn)

● Level 3 cache: 8 MB¹, 8-way associative³

* Blocks are actually called cache lines.

¹ For Core 2.
  http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-core-desktop-vol-1-datasheet.pdf

² For original Pentium 4. Gene Cooperman, “Cache basics”, 2003.
  http://www.ccs.neu.edu/course/com3200/parent/NOTES/cache-basics.html

³ Guesstimate.



  

Thanks for your attention!

That's all, folks. Hope you learned something.

Questions?

Ask me anything.

Feedback is welcome at http://bram.xyz/feedback .
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