
A27217 No calculator permitted in this examination

 -1- Turn Over

School of Computer Science

First Year – BSc Artificial Intelligence and Computer Science
First Year – UG Affiliated German

First Year – BSc Computer Science
First Year – MSci Computer Science

First Year – MEng Computer Science/Software Workshop
First Year - BSc Mathematics and Computer Science
First Year - MSci Mathematics and Computer Science

First Year – BA Political Economy
First Year – BSc Computer Science with Business Management

First Year – BSc Mathematics and Computer Science with Industrial Year
First Year – BSc Computer Science with Industrial Year

Frist Year – MEng Computer Science/Software Engineering with Industrial Year
First Year – BSc Artificial Intelligence and Computer Science with Industrial Year

First Year – BSc Computer Science with Business Management with Industrial Year
First Year - MSci Computer Science with Industrial Year

First Year – BA/BSc Liberal Arts and Sciences

06 22754

Foundations of Computer Science

Summer Examinations 2014

Time allowed: 3 hours

[Answer ALL Questions]

[Answer EACH Section is a different Answer Book]

 No calculator

A27217 -2- Turn Over

Section A
[Answer THIS Section in a different Answer Book]

[Answer ALL Questions]

1. (a) Write a function that takes a list of pairs and produces a list of the first

elements of the pairs.

 proj1 : ('a * 'b) list -> 'a list

 Example: proj1 [(1, "a"); (2, "b"); (3, "c")] = [1; 2; 3]
 [5%]

 (b) Show the step-by-step symbolic execution of this expression:
 proj1 [(1, "a"); (2, "b")] [5%]

 (c) Using structural induction show that for any list abs the list produced by

proj1 has the same length as abs. [10%]

2. In this question we will use the canonical (unary) data-type of natural numbers,

represented in OCaml as

 type nat = Zero | Suc of nat;;

 (a) Give the OCaml implementation for the function add, which computes the

sum of two natural numbers (nat). [5%]

 (b) Give the OCaml implementation for the function sub, which computes the

difference of two natural numbers (nat). For simplicity we assume that
subtracting a larger number from a smaller one returns zero. [5%]

 (c) Show that for any natural numbers m and n, we have
 sub (add m n) m = n.
 [10%]

 No calculator

A27217 -3- Turn Over

3. (a) Explain in a few words what is a search tree and why it is useful. Give an
OCaml implementation of a search tree datatype. [2%]

 (b) Write an OCaml function which computes the histogram (i.e. how many

times each element occurs) of a list. The argument is a list and the result
a list of pairs, in no particular order. For maximum points adapt a search
tree to improve the performance of your function. [8%]

 Example:
 histo [‘a’;’b’;’c’;’d’;’a’;’b’;’c’;’a’] =

[(‘a’,3);(‘c’,2);(‘d’,1);(‘b’,2)]

 No calculator

A27217 -4- Turn Over

Section B

4. (a) List and describe a minimal set of primitive constructors, selectors and

conditions that are sufficient to build and manipulate Binary Trees. [3%]

 (b) Use your primitive operators to write a recursive pseudocode algorithm

differentBT(t1,t2) that returns true if two binary trees t1 and t2 are
different, and false if they are identical. What is the time complexity of
your algorithm? [4%]

 (c) Specify the additional properties that a Binary Tree requires to make it a

Binary Search Tree. [1%]

 (d) Explain what is meant by a tree rotation and why it might be useful to

perform one. [2%]

 (e) Draw the binary search tree that results from inserting the items [20, 30,

35, 10, 40, 25] in that order into an initially empty tree. Show how a tree
rotation can usefully be applied to that tree. [2%]

5. (a) Explain what is meant by Priority Queue and Heap Tree, and how one

may be used to implement the other. [3%]

 (b) Explain what the processes Bubbling Up and Bubbling Down do in the

context of heap trees, and what they are used for. [3%]

 (c) Suppose you already have a procedure bubbleDown(i,a,n) that

bubbles down item i of a heap tree array a of size n, and a procedure
swap(i,j,a) that simply swaps items i and j of array a. Use those to
write a procedure heapSort(a,n) that starts with an array a and
finishes with that array sorted. [3%]

 (d) Suppose you ran a bank and regularly wanted to sort your nine million

customers according to how much money they kept in your bank, but you
were only interested in seeing the results for your top ten customers.
Explain which sorting algorithm you would use and why. [3%]

 No calculator

A27217 -5- End of Paper

6. (a) Explain what is meant by the terms hash table, hash function and hash
collision. [3%]

 (b) Comment on how the computational costs associated with good hash

tables vary with the number of entries, and what advantages and
disadvantages that gives them. [3%]

 (c) Suppose strings of four digits are to be stored in a hash table represented

as an array of size 11. The primary hash function is the sum of the third
and fourth digits modulo 11. Show the result of starting with an initially
empty hash table and inserting the following strings into it using linear
probing: “1041”, “1292”, “1130”, “1323”, “1214”, “1112” and “1010”. What
is the load factor of the resulting table, and how many collisions occurred?
 [4%]

 (d) Show what the resulting hash table would look like if direct chaining had

been used rather than linear probing. [3%]

 (e) Comment on the relative efficiencies of linear probing and direct chaining.
 [2%]

7. (a) Explain what is the difference between breadth first traversal and depth

first traversal of a connected graph. Suggest what kind of data structure
would be best to implement each of them. [3%]

 (b) Outline the general idea of Dijkstra’s algorithm for finding the shortest path

between two nodes in a weighted graph. Make clear what information
needs to be maintained at each stage when the algorithm is used. Apply
the algorithm to find the shortest path from A to F in the following
weighted graph, showing the current information at each stage. [8%]

