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The Importance of Search in AI

It has already become clear that many of the tasks underlying AI can be phrased in

terms of a search for the solution to the problem at hand.

One common kind of goal based agent are problem solving agents which must decide

what to do by searching for a sequence of actions that lead to their solutions.

In terms of production systems, we have seen the need to search for a sequence of rule

applications that lead to the required fact or action.

For neural network systems, we need to search for the set of connection weights that

will result in the required input to output mapping.

How we go about each of these searches is determined by a search strategy.  In this

lecture we shall look at a number of uninformed (blind) search strategies, i.e. search

strategies that do not use any information about the distance to the goal.  Next semester

you will learn about more advanced search strategies.
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Properties of Search Algorithms

Which search algorithm one should use will generally depend on the problem domain.

There are four important factors to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution

exists?

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost)

solution if there exists more than one solution?

3. Time Complexity – The upper bound on the time to find a solution as a

function of the complexity of the problem.

4. Space Complexity – The upper bound on the storage space (memory) required

at any point during the search, as a function of the complexity of the problem.

We shall start with some general theory, and then look in more detail at some specific

search algorithms.
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State Space Representations

The state space is simply the space of all possible states, or configurations, that our

system may be in.  Generally, of course, we prefer to work with some convenient

representation of that search space.

There are two components to the representation of state spaces:

1. Static States

e.g. (  (1 2)  (3)  )

2. Transitions between States

e.g. move(1, 2)

1
2 3

1
2 312 3
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State Space Graphs

If the number of possible states of the system is small enough, we can represent all of

them, along with the transitions between them, in a state space graph, e.g.

Exercise: Add the appropriate transition labels to each link.

( (1) (2) (3))

( (2 3) (1) ) ( (3 1) (2) ) ( (3 2) (1) )( (1 2) (3) ) ( (1 3) (2) ) ( (2 1) (3) )

( (1 2 3) ) ( (2 3 1) ) ( (1 3 2) )( (3 1 2) ) ( (2 1 3) ) ( (3 2 1) )
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Routes Through State Space

Our general aim is to search for a route, or sequence of transitions, through the state

space graph from our initial state to a goal state.

We define a goal test to determine if a goal state has been achieved.  Sometimes there

will be more than one possible goal state.

The solution can be represented as a sequence of link labels (or transitions) on the state

space graph.  Note that the labels depend on the direction moved along the link.

Sometimes there may be more than one path to a goal state, and we may want to find

the optimal (best possible) path.  We can define link costs and path costs for measuring

the cost of going along a particular path, e.g. the path cost may just equal the number of

links, or could be the sum of individual link costs.

For most realistic problems, the state space graph will be too large for us to hold all of it

explicitly in memory at any one time.
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Search Trees

It is helpful to think of the search process as building up a search tree of routes through

the state space graph.  The root of the search tree is the search node corresponding to

the initial state.  The leaf nodes correspond either to states that have not yet been

expanded, or to states that generated no further nodes when expanded.

At each step, the search algorithm chooses a new unexpanded leaf node to expand.  The

different search strategies essentially correspond to the different algorithms one can use

to select which is the next mode to be expanded at each stage.

( (1) (2 3) )

( (1 2 3) ) ( (1) (2) (3) )( (2 1) (3) )

move(2,1)
move(1,2)

move(2,floor)
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Breadth First Search (BFS)

BFS expands the leaf node with the lowest path cost so far, and keeps going until a goal

node is generated.  If the path cost simply equals the number of links, we can implement

this as a simple queue (“first in, first out”).

This is guaranteed to find an optimal path to a goal state.  It is memory intensive if the

state space is large.  If the typical branching factor is b, and the depth of the shallowest

goal state is d – the space complexity is O(bd), and the time complexity is O(bd).

1

2 3 4

5 6 7 8 9 10 11 12
11
1
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Depth First Search (DFS)

DFS expands the leaf node with the highest path cost so far, and keeps going until a goal

node is generated.  If the path cost simply equals the number of links, we can implement

this as a simple stack (“last in, first out”).

This is not guaranteed to find any path to a goal state.  It is memory efficient even if the

state space is large.  If the typical branching factor is b, and the maximum depth of the

tree is m (possibly ∞) – the space complexity is O(bm), and the time complexity is O(bm).

1

2 17 37

3 4 5 16 18 19 20 21
11
16 to 15 22 to 36
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Depth Limited Search (DLS)

DLS is a variation of DFS.  If we put a limit l on how deep a depth first search can go,

we can guarantee that the search will terminate (either in success or failure).

If there is at least one goal state at a depth less than l, this algorithm is guaranteed to find

a goal state, but it is not guaranteed to find an optimal path.  The space complexity is

O(bl), and the time complexity is O(bl).  For most problems we will not know what is a

good limit l until we have solved the problem!

1

2 7 12

3 4 5 6 8 9 10 11
11
1

limit  l = 2
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Depth First Iterative Deepening Search (DFIDS)

DFIDS is a variation of DLS.  If the lowest depth of a goal state is not known, we can

always find the best limit l for DLS by trying all possible depths l = 0, 1, 2, 3, … in

turn, and stopping once we have achieved a goal state.

This appears wasteful because all the DLS for l less than the goal level are useless, and

many states are expanded many times.  However, in practice, most of the time is spent

at the deepest part of the search tree, so the algorithm actually combines the benefits of

DFS and BFS.

Because all the nodes are expanded at each level, the algorithm is complete and optimal

like BFS, but has the modest memory requirements of DFS.  Exercise: if we had plenty

of memory, could/should we avoid expanding the top level states many times?

The space complexity is O(bd) as in DLS with l = d, which is better than BFS.  The time

complexity is O(bd) as in BFS, which is better than DFS.
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Bi-Directional Search (BDS)

The idea behind bi-directional search is to simultaneously search both forward from the

initial state and backwards from the goal state, and stop when the two BFS searches

meet in the middle.

This is not necessarily possible, but is likely to be feasible when the state transitions are

reversible.  There will clearly be problems if there is more than one goal state.

However, the algorithm is complete and optimal, and since the two search depths are

~d/2, it has space complexity O(bd/2), and time complexity O(bd/2).
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Repeated States

Up until now we have ignored an important complication that often arises in search

processes – the possibility of wasting time by expanding states that have already been

expanded before somewhere else on the search tree.

For some problems this possibility never arises, because each state can only be reached

in one way.

For many problems, however, repeated states are unavoidable.  This will include all

problems where the transitions are reversible, e.g.

( (1 2 3) )  →  ( (1) (2 3) ) →  ( (1 2 3) )  →  ( (1) (2 3) ) →  ( (1 2 3) )  →  …

The search trees for these problems are infinite, but if we can prune some of the

repeated states, we can cut the search tree down to a finite size, generating only the

portion of the tree that spans the state space graph.
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Avoiding Repeated States

There are three principal ways to deal with repeated states:

1. Do not return to the state you just came from

The node expansion function must be prevented from generating any node

successor that is the same state as the node’s parent.

2. Do not create paths with cycles in them

The node expansion function must be prevented from generating any node

successor that is the same state as any of the node’s ancestors.

3. Do not generate any state that was ever generated before

This requires that every state ever generated is remembered, potentially resulting

in space complexity of O(bd).

Clearly these are in increasing order of effectiveness and computational overhead.
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Comparing the Search Algorithms

We end with a comparison of the five uninformed search strategies we have looked at:

Strategy Complete Optimal Time Complexity Space Complexity

BFS Yes Yes O(bd) O(bd)

DFS No No O(bm) O(bm)

DLS If l ≥ d No O(bl) O(bl)

DFIDS Yes Yes O(bd) O(bd)

BDS Yes Yes O(bd/2) O(bd/2)

Simple BFS and BDS are complete and optimal but expensive with respect to space and

time.  DFS requires much less memory if the maximum tree depth is limited, but there is no

guarantee of finding any solution, let alone an optimal one.  DLS offers an improvement

over DFS if we have some idea how deep the goal is.  The best overall is DFID which is

complete, optimal and has low memory requirements, but still exponential time.
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Overview and Reading

1. We began by outlining the general properties of search algorithms, and the

basic ideas of state space representation and search trees.

2. Then we looked at five particular uninformed (blind) search algorithms:

breadth first search, depth first search, depth limited search, depth first

iterative deepening search, and bi-directional search.

3. We then considered the problem of repeated states and how to avoid them.

4. We ended with a comparison of our five uninformed search algorithms.

Reading

1. Russell & Norvig: Chapter 3

2. Nilsson: Chapter 8

3. Callan: Chapter 3

4. Winston: Chapter 4

5. Rich & Knight: Chapter 2


