
AITA : Frame Based Systems

© John A. Bullinaria, 2003

1. The Evolution of Semantic Networks into Frames

2. Frame Based Systems – The Basic Idea

3. Converting Semantic Networks into Frames

4. Set Theory as a Basis For Frame Systems

5. Problems with Sets That Are Also Instances

6. Sets of Sets and Meta-Classes

7. Slots as Fully-Fledged Objects

8. Minsky’s Scripts

w6s3-2

The Evolution of Semantic Networks into Frames

The idea of semantic networks started out as a natural way to represent labelled

connections between entities. But, as the representations were expected to support

increasingly large ranges of problem solving tasks, the representation scheme

necessarily became increasingly complex.

In particular, it became necessary to assign more structure to nodes, as well as to links.

For example, in many cases we need node labels that can be computed, rather than

being fixed in advance. It was natural to use database ideas to keep track of everything,

and the nodes and their relations began to look like frames.

In the literature, the distinction between frames and semantic networks is rather blurred.

However, the more structure a system has, the more likely it is to be termed a frame

system rather than a semantic network.

For our purposes, we shall use the practical distinction that semantic networks look like

networks, and frames look like frames.

w6s3-3

Frame Based Systems – The Basic Idea

A frame consists of a selection of slots which can be filled by values, or procedures for

calculating values, or pointers to other frames. For example:

A complete frame based representation will consist of a whole hierarchy of frames
connected together by a network of links/pointers.

hotel room
is-a: room

location: hotel

contains: {hotel chair,
 hotel bed,
 hotel phone,
 …}
...

hotel chair
is-a: chair

location: hotel room

height: 20-40cm

legs: 4

comfortable: yes

use: for sitting on
...

w6s3-4

Frames as a Knowledge Representation

The simplest type of frame is just a data structure with similar properties and

possibilities for knowledge representation as a semantic network, with the same ideas of

inheritance and default values.

Frames become much more powerful when their slots can also contain instructions

(procedures) for computing things from information in other slots or in other frames.

The original idea of frames was due to Minsky (1975) who defined them as “data-

structures for representing stereotyped situations”, such as going into a hotel room.

This type of frames are now generally referred to as scripts. Attached to each frame

will then be several kinds of information. Some information can be about how to use

the frame. Some can be about what one can expect to happen next, or what one should

do next. Some can be about what to do if our expectations are not confirmed. Then,

when one encounters a new situation, one can select from memory an appropriate frame

and this can be adapted to fit reality by changing particular details as necessary.

w6s3-5

Converting Semantic Networks to Frames

It is easy to construct frames for each node of a semantic net by reading off the links, e.g.

Three-Finger Pee-Wee-

FielderPitcher

Dodgers
Brooklyn

Cubs Brown Reese

.106

Player
Baseball-

.262

.252average

batting-average batting-average

Chicago-

batting-

team

isa isa

instance

team

instance

⇒
Pee-Wee-Reese

instance: Baseball player

team: Brooklyn Dodgers

Fielder
is-a: Baseball player

batting average: .262

Baseball Player
is-a: Adult Male

batting average: .252

bats: equal to handed

team:...

• • •

w6s3-6

Set Theory as a Basis For Frame Systems

The relationship between real world instances, the representation of instances, and the

representation of sets/classes of instances, is already quite familiar, e.g.

ARCH

ARC-DE-
TRIOMPHE

Denotation

Instantiation

Individuation

Individual Concept

Individual Object

Generic Concept

Clearly is-a corresponds to subset ⊆, and instance corresponds to element ∈. Then set

theory concepts such as transitivity, intersection, etc. apply automatically to our frames.

w6s3-7

 Problems with Sets That Are Also Instances

Consider the frame that we might create for the Brooklyn Dodgers baseball team:

This is obviously an instance of a baseball team, but it is also a set/class of players of

which Pee-Wee-Reese is an instance.

We need to be very careful about how we set up the hierarchy because we clearly don’t

want Pee-Wee-Reese to inherit the general properties of baseball teams (e.g. size 24),

but we do want Brooklyn Dodgers to inherit the properties that baseball teams have.

Brooklyn Dodgers
instance: baseball team

team size: 24

manager: Leo-Durocher

players: {Pee-Wee-Reese,
…}...

Baseball team

Brooklyn Dodgers

Pee-Wee Reese

is a

is a

24size

w6s3-8

Meta-Classes

Our Brooklyn Dodgers problem is quite general. From a set of instances we want to use

inheritance to infer the instance properties from the general knowledge (default

properties) of the set. But the class is also an entity in its own right, and may possess

properties that belong to the class as a whole rather than to the individual instances.

It is useful to make a distinction between regular classes whose instances are individual

entities, and meta-classes which are classes whose instances are other classes, e.g.

class
team

base-ball players
base-ball team

Brooklyn Dodgers
• P-W-R

w6s3-9

Representing Meta-Classes in Frames

We can see that each frame that corresponds to a set/class needs to contain attributes

about the set itself, as well as attributes to be inherited by each element of the set. We

distinguish them by prefixing the latter with an asterisk (*). For our previous example:

So Brooklyn Dodgers inherits team size 24, but Pee-Wee Reese doesn’t.

Team
instance: Class

isa: Class

cardinality: 4563

*team-size:

Baseball Team
instance: Class

isa: Team

cardinality: 274

*team-size: 24

*manager:

Brooklyn Dodgers
instance: Baseball Team

isa: Baseball Player

manager: Leo-Durocher

*uniform-colour: blue

Pee-Wee-Reese
instance: Brooklyn Dodgers

instance: Fielder

handed: left

w6s3-10

Slots as Full-Fledged Objects

We have seen that frame based representations can be made much more powerful by

allowing the slot fillers to become more than simple values. This includes being frames

in their own right, with a full range of hierarchical arrangements, inheritance, etc. The

main filler properties we generally want to represent are:

1. Details about whether the slot is single or multi-valued.

2. Constraints on the ranges of values or type of values.

3. Simple default values for the attribute.

4. Rules for inheriting values for the attribute.

5. Rules for computing values separately from inheritance.

6. The classes/frames to which it can be attached.

7. Inverse attributes.

Naturally, the frame system interpreter must know how to process such frames.

w6s3-11

Scripts

Scripts are Minsky’s original idea of a frame based structure that describes stereotyped

sequences of events in a particular context.

The slots in such frames will contain several different kinds of information, some of

which may be rather complex. Typically they will contain:

1. Information about how to use the frame.

2. A specification for the language/notation used in the frame.

3. Details about the ‘props’ and ‘roles’ that may be encountered.

4. Instructions about what one can expect to happen next, or what one should do next.

5. Indications about what to do if our expectations are not confirmed.

6. Any other information/instructions that might be appropriate.

The idea is that, when someone or something (e.g. our AI agent) encounters a new

situation, they can select from memory an appropriate frame, and this can be adapted to

fit reality by filling in the details as necessary.

w6s3-12

Primitive Acts

In formulating scripts it is sensible to build them within a framework of agents

manipulating props using a well defined set of primitive acts, such as:

MOVE Movement of a body part by its owner (e.g. kick)

PROPEL Application of physical force to an object (e.g. push)

GRASP Grasping of an object by an agent (e.g. clutch)

INGEST Ingestion of an object by an animal (e.g. eat)

ATTEND Focussing of a sensor towards a stimulus (e.g. listen)

MTRANS Transfer of mental information (e.g. tell)

SPEAK Production of sounds (e.g. say)

PTRANS Transfer of the physical location of an object (e.g. go)

ATRANS Transfer of an abstract relationship (e.g. give)

MBUILD Building of new information out of old (e.g. decide)

From these we can construct arbitrarily complex scripts.

w6s3-13

Components of a Script

Looking at some typical scripts we can identify six important components:

Entry conditions Conditions that must be satisfied before the events described

in the script can occur.

Roles Agents involved in the events described in the script (which

may be explicitly or implicitly declared).

Props Objects involved in the events described in the script (which

may be explicitly or implicitly declared).

Scenes All the actual sequences of events that are represented in the

script.

Track The specific route through the possible sequences of events

that arises when the script is processed.

Results Conditions that will be true after the events described in the

script have occurred.

It is clear that scripts provide an extremely powerful representational structure.

w6s3-14

Overview and Reading

1. We started by looking at the evolution of semantic networks into frames,

and how we can convert from one to the other.

2. We then considered the basic components of frame based representations,

and noted how set theory provides a convenient basis for their processing.

3. We saw how problems can arise when sets are also instances, and how

these problems can be avoided with the concept of meta-classes.

4. We considered how slots can be promoted to fully-fledged objects with

extremely general filler properties.

5. We ended with a discussion of frame based scripts.

Reading

1. Rich & Knight: Chapters 9, 10

2. Winston: Chapter 10

3. Jackson: Chapter 6

