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Brain Modelling – What Needs Modelling?

It makes sense to use all available information to constrain our theories/models of real

brain processes.  This involves gathering as much empirical evidence about brains as we

can (e.g. by carrying out psychological experiments) and comparing it with our models.

The comparisons fall into three broad categories:

Development : Comparisons of children’s development with that of our models – this

will generally involve both maturation and learning.

Adult Performance : Comparisons of our mature models with normal adult

performance – exactly what is compared depends on what we are modelling.

Brain Damage / Neuropsychological Deficits : Often performance deficits, e.g. due to

brain damage, tell us more about normal brain operation than normal performance.

We shall first look at the general modelling/testing issues involved for each of these

three categories, and then consider some typical experimental and modelling results in

more detail for a particular case study: reading aloud and lexical decision.
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Development

Children are born with certain innate factors built into their brains (e.g. it already has a
modular structure).  They then learn from their environment (e.g. they acquire language
and motor skills).  Many systems also have maturational factors which are largely
independent of their learning environment (e.g. they grow in size).  Some children have
developmental problems (e.g. dyslexia, strabismus).

Psychologists spend considerable effort in studying these things.  Typically they
measure the order in which various skills are acquired (and sometimes lost), the ages at
which particular performance levels are reached, and they also try to identify pre-
cursors to abnormal development.

It is often difficult to tell which abilities are innate and which are learned (the Nature-
Nurture debate).  Compensatory strategies can make it difficult to identify the causes of
developmental problems.  Ethical restrictions often make empirical studies difficult.

We aim to build models (e.g. involving neural networks) that match the development of
children.  These models can then be manipulated in ways that would be unethical with
children, or simply impossible to carry out in practice.



w3s3-4

Adult Performance

If we succeed in building accurate models of children’s development, one might think
our adult models (e.g. fully trained neural networks) will require little further testing.  In
fact, largely due to better availability and reliability, there are a range of adult
performance measures that prove useful for further constraining our models, such as:

Accuracy : basic task performance levels, e.g. how well are particular aspects of a
language spoken/understood, or how well can we estimate a distance?

Generalization : e.g. how well can we pronounce a word we have never seen before
(vown fi gowpit?), or recognise an object from an unseen direction?

Reaction Times : response speeds and their differences, e.g. can we recognise one
word type faster than another, or respond to one colour faster than another?

Priming  : e.g. if asked whether dog and cat are real words, you tend to say yes to cat
faster than if you were asked about dot and cat (this is lexical decision priming).

Speed-Accuracy Trade-off : across a wide range of tasks your accuracy tends to
reduce as you try to speed up your response, and vice-versa.

Different performance measures will be appropriate to test different models.  For brain
modelling, the more human-like the models the better.  Often we try, and sometimes
succeed, in building AI systems that perform better than humans.
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Brain Damage and Neuropsychology

Most tasks can be accomplished in more than one manner.  For example, there are many
cues that might be used to focus our eyes for objects at different distances, and it can be
hard to determine how humans actually use those cues.  Often, the errors produced by
brain damaged patients provide valuable evidence of mental structure (Shallice, 1988).
The inference from Double Dissociation to Modularity is particularly important:
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The detailed degradation of performance due to different types of brain damage can be
used to infer how normal performance is achieved.  Naturally, if our brain models do not
exhibit the same deficits as real brains, they are in need of revision (Bullinaria, 2002).

Double Dissociation

If Patient A performs Task 1 well but is very poor
at Task 2, and Patient B performs Task 2 well but is
very poor at Task 1, we say that there is a Double
Dissociation.  From this we can usually infer that
there are separate modules for the two tasks.
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Validating the Models – Experimental Testing

Psychologists have devised numerous ‘ingenious’ experiments to test human abilities on

a range of tasks, and hence constrain our models of how we carry out those tasks.  To
illustrate this, we shall concentrate here on two particularly simple tasks:

Naming / Reading Aloud   Present the experimental subject with a string of letters and
time how long it takes them to read the word aloud.  Count and classify the errors.
The letter strings may be words of different frequency and regularity, or they may be
pronounceable made-up words (non-words).  This should give clues on how the
mappings between graphemes (letters) and phonemes (sounds) are organised.

Lexical decision   Present the experimental subject with a string of letters (or sounds)
and time how long it takes them to decide whether it is a real word or a non-word.
See if changing the preceding string makes a difference (i.e. priming).  This gives
clues on how the mappings between graphemes (letters) or phonemes (sounds) and
the ‘lexicon’ or ‘store of word meanings’ are organised.

It turns out that some very simple neural network models can account for a surprising
range of experimental data (Plaut & Shallice, 1993; Plaut et al., 1996; Bullinaria, 1997).
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Traditional Dual Route Model of Reading & Related Tasks
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Traditionally tasks such as reading were
modelled in terms of “boxes and arrows”

with each box representing a particular
process (e.g. a set of rules for converting
graphemes to phonemes), and arrows
representing the flow of information.
One then modelled brain damage by
removing particular boxes or arrows.

This actually accounts for a lot of human
empirical data (Coltheart et al., 1993).
However, recent neural network models
(Plaut et al., 1996; Bullinaria, 1997) have
been able to simulate much finer grained
empirical data.  We shall look in turn at a

number of the relevant modelling issues
and empirical results.
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Representation Problems for Reading Aloud

To set up a neural network reading model we must first decide on appropriate input and
output representations.  There are three basic problems that must be addressed:

Alignment Problem  The mapping between Letters and Phonemes is often many-to-one:

e.g.      ‘th’   →  /D/          and        ‘ough’  →  /O/           in            ‘though’   →  /DO/

It is not obvious to a network how the Letters and Phonemes should line up.

Recognition Problem  The same letters in different word positions and different words
should be recognized as being the same:

e.g.     ‘d’    in    ‘deed’ → /dEd/        and        ‘fold’ → /fOld/

Context Problem  The same letters in the same positions in different words are often
pronounced differently :

e.g.     ‘c’    in     ‘cat’  → /kat/       and       ‘cent’  →  /sent/

We have a complicated hierarchy of rules, sub-rules and exceptions.  Fortunately, neural
networks are very good at learning such things.
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The Multi-target  NETtalk Model

The NETtalk model of Sejnowsi & Rosenberg takes care of the recognition and context
problems.  Each output phoneme simply corresponds to letter in middle of input window:

output - phonemes

hidden layer  

input - letters

(nhidden)

(nchar • nletters)

(nphonemes)

It turns out that the network can also figure out the alignment problem by assuming the
alignment that best fits in with its expectations (Bullinaria, 1997), e.g. for ‘ace’:

presentation    inputs    target outputs
        1.    - - - a c e -   A  A  -

        2.    - - a c e - -   s  -  A

        3.    - a c e - - -   -  s  s

It can then be trained with a standard learning algorithm (e.g. back-propagation).
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Development = Network Learning

If our neural network models are to provide good accounts of what happens in real brains,
we should expect their learning process to be similar to the development in children.
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Our networks find regular words (e.g. ‘bat’) easier to learn that exception words (e.g.
‘yacht’) in the same way that children do.  It also learns human-like generalization.
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Developmental Problems = Restricted Network Learning

Many dyslexic children exhibit a dissociation (performance difference) between regular
and irregular word reading.  There are many ways this can arise in network models:

10001001 01
0

20

40

60

80

100

Regular
Exception
Non-words

Regular
Exception
Non-words

Epoch

P
e

rc
e

n
ta

g
e

 
C

o
rr

e
c

t 15 HU

No SPO

1.   Limitations on computational resources (e.g. only 15 hidden units)
2.   Problems with learning algorithms (e.g. no SPO in learning algorithm)
3.   Simple delay in learning (e.g. low learning rate)
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Modelling Reaction Times

Cascaded activation builds up in our output neurons at rates dependent on the network’s

connection weights.  We can thus compute reaction times from our network models:

Reaction Time  =  Time at Output Action  –  Time at Input Presentation
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High frequency words are pronounced faster than low frequency words.  Regular words

are pronounced faster than irregular words when they are low frequency, but not when
they are high frequency.  This is exactly the same pattern found with human subjects!

If we present the word ‘dog’ at the
input of our network we can simulate
the build-up of output activation for
each output phoneme.   From these
we can determine simulated reaction
times for whole words.  Generally
we average the results over matched
groups of words.
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Modelling Lexical Decision Reaction Time Priming

Semantic priming   Semantically related words facilitate lexical decision, e.g. ‘boat’ primes
‘ship’.  This arises naturally in neural nets due to over-lapping semantic representations.

Associative priming  Semantically unrelated words can also provide facilitation, e.g. ‘pillar’
primes ‘society’.  This will also arise naturally in network models if they can learn that
being prepared for common word co-occurrences speeds their average response times.
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We can plot the reaction
times for a set of words for
each different prime (i.e.
preceding word) type during
training.  We can also study
the effect of prime duration
and target degradation.  The
pattern of priming results is
again in line with that found
in human subjects.
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Modelling Speed-Accuracy Trade-offs

We simulate reaction times by measuring how long it takes for cascaded output activations
to build up to particular thresholds in our models.  By lowering the thresholds we can speed
up the responses, but risk getting the wrong responses.  For the reading model:
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The sigmoidal shape of the speed-accuracy trade-off curve is very human-like.
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Brain Damage = Network Damage

One advantage of neural network modelling is having natural analogues of brain damage –
the removal of sub-sets of neurons and connections, or adding noise to connection weights.
If we damage our reading model, the regular items are more robust than the irregulars:
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The neural network follows the same pattern as found in human acquired Surface Dyslexia.
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Internal Representations & Surface Dyslexia
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One can look at the represent-
ations that the neural network

learns to set up on its hidden
units.  Here we see the weight
sub-space corresponding to the
distinction between long and
short ‘i’ sounds, i.e. the ‘i’ in
‘pint’ versus the ‘i’ in ‘pink’.

The irregular words are closest
to the border line.  So, after net
damage, it is these that cross the
border line and produce errors
first.  Moreover, the errors will
mostly be regularisations.  This

is exactly the same as is found
with human surface dyslexics.
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Modelling More Complex Human Abilities

We have seen how some very simple neural networks can account for a wide range of
empirical human data on reading aloud and lexical decision.  Neural networks are usually
good when fairly simple input-output mappings or control systems are required.

Problems requiring complex reasoning, sequential thought processes, variable binding,
and so on, generally prove difficult for neural networks to learn well.  Much research is
still going on to show how neural networks can, in principle, do such things.

Moreover, it is sometimes just as difficult to understand how our neural networks have

learnt to operate, as it is to understand the brain system it meant to be modelling.

In practice, it is often easier to abstract out the essential ideas of the problem, and use a
non-neural network (e.g. a symbol processing) approach.  This is true both for brain
modelling and for artificial system building.

Most of the rest of this module will be concerned with non-neural network approaches to
AI.  A whole module will be dedicated to neural networks in the Second Year.
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Implications for Building AI Systems

Brains have evolved by natural selection to be very good at what they do, so it makes

sense to employ the results of that evolution when building AI systems.

The idea is that, since brains exhibit intelligent behaviour, models of brains should also

show intelligent behaviour, and consequently be a good source of ideas for AI systems.

Real brains, however, are enormously complex, and our brain models currently capture

very little of that complexity.  We need to abstract out the essential processes at various

levels of description, and work with those.

We must remember, however, that the evolutionary process has itself placed constraints

on what can emerge.  Birds, for example, must be composed of biological matter, and so

feathers are a good solution to the requirements of flying.  Aeroplanes made out of metal

actually perform much better, and work on very different principles to birds.

While we should clearly make the most of ideas from brain modelling, we should not

allow it to restrict what kinds of AI systems we build.
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Overview and Reading

1. We began by looking at three broad categories of constraints on our brain

models – development, adult performance, and neuropsychological deficits.

2. We then saw how some very simple neural network models could account for

a broad range of empirical data on reading aloud and lexical decision.  The

same approaches could be applied to a large range of other human tasks.

3. We ended by looking at the implications this has on building AI systems in

general – for more complex brain processes and for real world applications.

Reading

1. The Computational Brain, P.S. Churchland & T.J. Sejnowski, MIT Press,

1994.  This is a whole book on computational brain modelling with numerous

interesting examples.

2. The items in the Advanced Reading List above all provide examples of brain

modelling that may clarify the issues covered in today’s lecture.


