
AITA : Overview and Revision

© John A. Bullinaria, 2004

1. Aims and Learning Outcomes

2. Artificial Intelligence – Goals, Roots, Sub-fields

3. Biological Intelligence and Neural Networks

4. Agents – Rational/Reflex/Intelligent Agents

5. Knowledge Representations – Semantic Nets and Frames

6. Production Systems – Recognize-Act Cycle

7. Uninformed Search

8. Expert Systems, Uncertainty Treatment, Machine Learning

9. Philosophical Issues and Misconceptions

rev-2

W2S1 : Module Aims and Learning Outcomes
Aims:
1. Provide a general introduction to artificial intelligence and its techniques.
2. Give an overview of the key ideas such as knowledge representation, search, rule

based systems, and learning that underlie the main sub-fields of artificial intelligence.
3. Demonstrate the need for different approaches for different problems.

Learning Outcomes:
1. Structure the field of artificial intelligence into its main sub-fields, and outline the

important features of AI systems.
2. Explain some of the most important knowledge representation formalisms and

understand why there are different ones, discuss their advantages and drawbacks,
and represent knowledge in unseen easy examples in any of them.

3. Apply simple uniformed search algorithms.
4. Understand the processes involved in Expert Systems and in building such systems.

5. Discuss the importance of learning for intelligent systems.
6. Provide examples of different types of AI systems, and explain their differences,

common techniques, and limitations.

rev-3

W2S2 : What Exactly is AI?

“Artificial Intelligence (AI) is the part of computer science concerned with designing

intelligent computer systems, that is, systems that exhibit characteristics we associate

with intelligence in human behaviour – understanding language, learning, reasoning,

solving problems, and so on.” (Barr & Feigenbaum, 1981)

Engineering Goal To solve real world problems using AI techniques such as

knowledge representation, learning, rule systems, search, and so on.

Scientific Goal To determine which ideas about knowledge representation, learning,

rule systems, search, and so on, explain various sorts of real intelligence.

AI has identifiable roots in a number of older fields: Philosophy, Logic/Computation,

Psychology/Cognitive Science, Biology/Neuroscience, Evolution.

AI has many sub-fields (such as Neural Networks, Evolutionary Computation, Expert

Systems, Natural Language Processing, Planning, Robotics, Vision), but they employ

common techniques (such as Representation, Learning, Rules, Search).

rev-4

W3S1 : Biological Intelligence and Neural Networks

The human nervous system that forms the basis of our natural intelligence has the form:

Stimulus Response

We can attempt to use Artificial Neural Networks as the basis of AI systems, because:

1. They are extremely powerful computational devices (Turing equivalent).

2. Massive parallelism makes them very efficient.

3. They can learn and generalize – so no need for enormous feats of programming.

4. They are very fault tolerant – like the “graceful degradation” of biological systems.

5. They are very noise tolerant – coping where normal symbolic systems have difficulty.

They can be used for both Brain Modelling and Artificial System Building.

Receptors

Neural
Network/

Brain

a

i

n

r

a

i

n

Effectors

E

f

f

e

c

t

o

r

s

rev-5

W4S1 : Rational Agents

“An agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through effectors.” (Russell & Norvig, 1995)

Stimulus Response

A rational agent is one that acts in a manner that causes it to be as successful as it can.

We need to determine appropriate performance measures to judge success in each case.

An ideal rational agent is one that takes whatever action is expected to maximise its

performance measure on the basis of the evidence provided by its perceptual history and

whatever built-in knowledge it has. An autonomous agent will supplement its built-in

knowledge with its own acquired (or learned) knowledge in order to act appropriately.

We design agents according to their Percepts, Actions, Goals and Environment.

Sensors Agent Effectors

E

f

f

e

c

t

o

r

s

rev-6

Types of Intelligent Agents

We can classify four types of intelligent agents of increasing sophistication:

1. Simple Reflex Agents – use simple condition-action rules or IF–THEN rules to

produce appropriate (intelligent looking) actions for given percepts.

2. Reflex Agents with an Internal State – can keep track of previous states and use

knowledge of how the world evolves to produce better actions.

3. Goal based agents – can determine sequences of actions to reach its goal state(s).

Search and planning techniques will usually be required.

4. Utility based agents – can use utility/quality measures to choose between

alternative sequences of actions/states that lead to a goal state being obtained.

Percepts should not only be used for generating agent actions, but also to improve the

ability to act in the future, i.e. learning. Learning can range from trivial memorisation

to the creation of entire scientific theories. A learning agent has four basic components:

a Performance Element, a Learning Element, a Critic, and a Problem Generator.

rev-7

W5S1 : Knowledge Representation

The object of a knowledge representation is to express knowledge in a computer
tractable form, so that it can be used to enable our agents to perform well.

A knowledge representation language is defined by two aspects:

1. Syntax The syntax of a language defines which configurations of components of

the language constitute valid sentences.

2. Semantics The semantics defines which facts in the world the sentences refer to,

and hence the statement about the world that each sentence can make.

A good knowledge representation system for a particular domain should possess four

important properties: Representational Adequacy, Inferential Adequacy, Inferential

Efficiency, and Acquisitional Efficiency.

Some common knowledge representation systems are: Natural Language, Databases,

First Order Logic, Rule Systems, Semantic Networks, and Frames.

rev-8

Practical Aspects for Good Representations

In addition to the general requirements for knowledge representation, there are a number

of practical aspects to consider when formulating good representations:

1. They must be computable – to be created with standard computing procedures.

2. They should make the important objects and relations explicit – so it is easy to see

what is going on.

3. They need to bring together the objects and relations – so everything you need can

be seen at once.

4. They should suppress irrelevant detail – so that rarely used details can be kept out

of sight, but are still available when needed.

5. They should be transparent – so you can easily understand what is being said.

6. They need to be concise and fast – so information is stored and retrieved rapidly.

7. They should expose any natural constraints – so it is easy to express how one

object or relation influences another.

8. They must be complete – so they can represent everything that needs representing.

rev-9

W6S1 : Semantic Networks

A semantic network represents knowledge as a set of labelled nodes and links, e.g.

Two important features are inheritance and defaults (i.e. typical values). We can

assign expected/default values of parameters (e.g. height, has nose) and inherit them

from higher up the hierarchy. This is more efficient than listing all the details at each

level. We can also over-ride the defaults. For example, baseball players are taller than

average men, so we make their default height over-ride the default height for men.

163cm

178cm

is ais a

is a

Man

Person

Baseball PlayerChess Player 195cm
height

height

height
Yes

has nose

rev-10

Components of a Semantic Network

The formal components of semantic networks are quite straight-forward:

Lexical part nodes – denoting objects
links – denoting relations between objects
labels – denoting particular objects and relations

Structural part the links and nodes form directed graphs
the labels are placed on the links and nodes

Semantic part meanings are associated with the link and node labels
(the details will depend on the application domain)

Procedural part constructors allow creation of new links and nodes
destructors allow the deletion of links and nodes
writers allow the creation and alteration of labels
readers can extract answers to questions

Some common examples include AND/OR Trees, IS-A and IS-PART Hierarchies, and

Representations of Events and Natural Language Sentences.

rev-11

Multiple Inheritance and Tangled Hierarchies

If multiple inheritance is allowed, we must avoid inheritance conflicts. Hierarchies that

are not simple trees are called tangled hierarchies. For example, can Oliver fly in:

A better solution than having a specific “flies no” for all individual instances of an

ostrich, would be to have an algorithm for traversing the hierarchy which guarantees that

specific knowledge will always dominate over general knowledge. We can define the

concept of inferential distance, that provides a partial ordering of closeness.

is ais a

instanceinstance

Oliver

Ostrich Pet BirdNo

Bird Yes

flies

flies

rev-12

W6S3 : Frame Based Systems

Frames are a natural extension of Semantic Networks. They consist of sets of slots filled

by values, procedures for calculating values, or pointers to other frames. For example:

Scripts are frame based systems that describe stereotyped sequences of events and

actions that enable an intelligent agent to perform appropriately in a particular context.

hotel room
is-a: room

location: hotel

contains: {hotel chair,
 hotel bed,
 hotel phone,
 …}
...

hotel chair
is-a: chair

location: hotel room

height: 20-40cm

legs: 4

comfortable: yes

use: for sitting on
...

rev-13

W7S1 : Production Systems

A production system consists of four basic components:

1. A set of rules of the form Ci → Ai where Ci is the condition part and Ai is the action

part. The condition determines when a given rule is applied, and the action

determines how it is applied.

2. One or more knowledge databases that contain whatever information is relevant

for the given problem. Some parts of the database may be permanent, while others

may temporary and only exist during the solution of the current problem. The

information in the databases may be structured in any appropriate manner.

3. A control strategy that determines the order in which the rules are applied to the

database, and provides a way of resolving any conflicts that can arise when several

rules match at once.

4. A rule applier which is the computational system that implements the control

strategy and applies the rules.

The whole system operates according to the deductive inference rule “modus ponens”.

rev-14

Recognize-Act Cycle

Typically, our production systems will have a rule interpreter that takes the form of a

Recognize-Act Cycle. This cycle has four stages:

1. Match condition/premise patterns in the rules against the elements in the

working memory to identify the set of applicable rules. This will usually involve

binding specific values to the variables in the rules.

2. If there is more than one rule that can be ‘fired’ (i.e. that can be applied) at a

given time, then use a conflict resolution strategy to choose which one from that

conflict set to apply. If no rules are applicable, then stop.

3. Apply the chosen rule, which may involve adding a new item to the working

memory or deleting an old one.

4. Check if the terminating condition is fulfilled. If it is, then stop. Otherwise,

return to stage 1.

The termination condition can either be defined by a goal state, or by a cycle condition

(e.g. a maximum number of cycles).

rev-15

Forward and Backward Chaining

Forward chaining or data-driven inference works by repeatedly: starting from the

current state, matching at the premises of the rules (the IF parts), performing the

corresponding actions (the THEN parts), and possibly updating the knowledge base or

working memory.

Backward chaining or goal-driven inference works towards a final state by looking at

the working memory to see if the sub-goal states already exist there. If not, then look at

the actions (the THEN parts) of the rules that will establish the sub-goals, and set up new

sub-goals for achieving the premises of those rules (the IF parts).

There are four major factors to help us choose between forward and backward reasoning:

1. Are there more possible start states or goal states? Start at the lowest.

2. Do we require the program to justify its reasoning? If so, follow human reasoning.

3. What kind of events trigger problem solving? New facts or queries?

4. In which direction is the branching factor greatest? Go with the lower.

rev-16

Conflict Resolution Strategies

Perhaps the five most common general conflict resolution strategies are:

1. Delete instantiations of rules that have already fired (to prevent repetitions).

2. Order instantiations by the generation age of all the elements. Prefer the younger

ones, since new elements are more likely to describe the actual situation.

3. Compare the generation age of the elements in working memory which match the

first condition of the rules. Prefer the younger ones. May be more efficient than 2.

4. Prefer the most specific rules (i.e. those with the most pre-conditions).

5. Random choice (which, if nothing else, is very easy to compute).

The easiest way to proceed in problem specific cases is to simply add extra conditions to

the rules to avoid the conflicts. These extra conditions can be related to the inference

strategies, e.g. to what is currently being searched for. However, we will end up with a

mixture of heuristic and factual knowledge, and large knowledge bases will not be easily

maintainable. It makes sense to separate the object level knowledge from the meta-level

knowledge, and to supplement our rules with appropriate meta-rules.

rev-17

W8S1 : Uninformed Search

The state space is the space of all possible states, or configurations, our system may be

in. Generally, we work with some convenient representation of that search space.

If the number of possible states of the system is small enough, we can represent them all,

along with the transitions between them, in a state space graph.

The aim of our search algorithms is to find a route, or sequence of transitions, through

the state space graph from our initial state to a goal state.

There are four important properties of search algorithms we need to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution exists?

2. Optimality – Is the solution found guaranteed to be best possible solution?

3. Time Complexity – The upper bound on the time to find a solution.

4. Space Complexity – The upper bound on the storage space (memory) required.

rev-18

Types of Uninformed Search

It is helpful to think of the search process as building up a search tree within the state
space graph. The root of the search tree is the initial state. The leaf nodes correspond to
states that have not yet been expanded, or have been expanded but generated no further
nodes. A good strategy for avoiding repeated states will improve the search efficiency.

For tree branching factor b, maximum depth m, solution depth d, depth limit l, we find:

Strategy Complete Optimal Time Complexity Space Complexity

BFS Yes Yes O(bd) O(bd)

DFS No No O(bm) O(bm)

DLS If l ≥ d No O(bl) O(bl)

DFIDS Yes Yes O(bd) O(bd)

BDS Yes Yes O(bd/2) O(bd/2)

The best overall is DFID which is complete, optimal and has low memory requirements.

rev-19

W9S1 : Expert Systems

“An expert system is a computer program that represents and reasons with knowledge of

some specialist subject with a view to solving problems or giving advice.”(Jackson, 1999)

There are no natural limits on what problem domains expert systems can be built to deal

with. Expert systems can be distinguished from conventional computer systems in that:

1. They simulate human reasoning about the problem domain, rather than simulating

the domain itself.

2. They perform reasoning over representations of human knowledge, in addition to

doing numerical calculations or data retrieval. They have corresponding distinct

modules referred to as the inference engine and the knowledge base.

3. Problems tend to be solved using heuristics (rules of thumb) or approximate

methods or probabilistic methods which, unlike algorithmic solutions, are not

guaranteed to result in a correct solution.

4. They usually have to provide explanations and justifications of their solutions or

recommendations in order to convince the user that the reasoning is in fact correct.

rev-20

Building Expert Systems

Expert systems are typically built around a powerful production system:

The knowledge acquisition component allows the expert to enter knowledge or expertise

into the system, and refine it later when required. The principal stages are: knowledge

elicitation, intermediate representation, and compilation into executable form.

The major technical problems that need to be overcome are: the knowledge acquisition

bottleneck, brittleness, lack of meta-knowledge, and the difficulty of reliable validation.

Knowledge
base of

facts, rules,
heuristics

Inference
engine

User
interface

Knowledge
acquisition

system

Expert User

Knowledge Engineer

rev-21

W9S3 : Uncertainty Treatment

Potential sources of uncertainty for AI systems, such as expert systems, fall into two

types: imperfect domain knowledge and imperfect case data.

Then there are three types of uncertainty: randomness (e.g. 3% of sensors fail in first

year), vagueness (e.g. tall, little, etc.), and inadequacy (e.g. reliability of experts’ rules).

The obvious way to treat uncertainty is to use the laws of probability (Bayes Rule, etc.)

to perform probabilistic reasoning. However this will generally be intractable because

of the number of joint/conditional probabilities that would be needed.

Bayesian Networks avoid this problem by using conditional independencies among the

variables to ignore many interactions. If p(A|{xi},{ yi}) = p(A|{xi}) then A is conditionally

independent of {yi} and, as far as A is concerned, if we know {xi} we can ignore {yi}.

Alternative uncertainty treatments include MYCIN Style Certainty Factors (but these are

not necessarily self-consistent), Dempster-Shafer Theory, and Fuzzy Logic.

rev-22

W10S1 : Machine Learning

Strategies for learning can be classified according to the amount of inference the system

has to perform on its training data. In increasing order we have

1. Rote learning – new knowledge is implanted directly with no inference at all.

2. Supervised learning – the system is given a set of training examples consisting of

inputs and outputs and is required to discover the relation or mapping between them.

3. Unsupervised learning – the system is given a set of training examples consisting

only of inputs and is required to discover for itself what the outputs should be.

When it comes to an expert system learning new rules there are two basic approaches:

1. Inductive rule learning methods create new rules about a domain not derivable from

any previous rules. From ‘training data’ find rules that generalize to new situations.

2. Deductive rule learning enhances the efficiency of a system’s performance by

deducing new rules from previously known domain rules and facts.

Useful machine learning procedures are: rule induction systems, the version space

approach to concept learning, and decision tree algorithms such as ID3 and C4.5.

rev-23

W11S1 : Philosophical Issues and Misconceptions

We can distinguish weak AI (machines that act as if they are intelligent) and strong AI

(machines which act intelligently have real conscious minds). We are interested in:

1. Limitations – What intelligent things are there that AI can never do?

2. Misconceptions – What can AI actually do, that some people think it can not do?

Four names that often crop up in “philosophical” debates are:

1. Lucus and Penrose – have tried to argue that Gödel’s Incompleteness Theorem (that

any formal system rich enough to formulate arithmetic contains a true theorem that

cannot be proved within that system) implies human reasoning can’t be mechanised.

2. Drefus – a philosopher who has written numerous books and papers about things he

thinks computers and/or AI cannot do. Learning, uncertainty, common sense

knowledge, control of sensors, and so on. He has been proven wrong on all counts.

3. Searle – his Chinese Room passes the Turing test in Chinese, without understanding

Chinese or of how it passed the Turing test. Searle believes this to be of relevance to

the possibility of strong AI. Compare this with the Brain Prosthesis Experiment.

rev-24

Overview and Reading

1. The module appears to have achieved its aims and learning outcomes.

2. We began with an overview of the roots, goals and sub-fields of AI, and a

discussion of biological intelligence and its basis in neural network systems.

3. The general ideas of rational and intelligent agents were then covered.

4. This led to the need for a range of powerful knowledge representations such

as semantic networks and frames, and production systems.

5. Procedures for performing uninformed search were then discussed.

6. The above ideas could then be used in building expert systems, for handling

uncertainty in them, and in formulating machine learning systems.

7. We ended with a brief discussion of some relevant philosophical issues.

Reading

Your lecture notes!

